CONTENTS | Cour | se photograph | III | |------|---|-----| | | AELBROECK — Introductory lecture: Instabilities and confinement in toroidal plasmas | 11 | | H. A | . B. Bodin — High-beta toroidal pinches | 19 | | Ī | I. Introduction | | | 2 | 2. Properties of axisymmetric pinch configurations | | | | 2.1. Heating 2.2. Equilibrium 2.3. Stability 2.3.1. General considerations 2.3.2. Special cases 2.4. Growth rates | | | 3 | 3. Experimental results on high-beta pinch configurations | | | | 3.1. Screw-pinches with circular cross-sections | | | | 3.2. The high-beta reversed field pinch 4. Conclusions | | | | References | | | | and plasma collisional transport in real space | 55 | | | finement in closed magnetic configurations | 63 | | | Preface | | | | CHAPTER 1 — Toroidal magnetic configurations for plasma confinement. Magnetostatic equilibrium | | | | 1.1. Toroidal configurations and their topology | | | | 1.2. Natural coordinates1.3. Equilibrium in the case of axisymmetry | | | | Chapter 2 — Magnetic stability | | | : | 2.1. Energy principle2.2. Localised displacements2.3. Localised criterion of the first kind2.4. The localised criterion of the second kind | | | | CHAPTER 3 — Some methods for solving toroidal MHD equations | | | | 3.1. Intrinsic coordinates | | | | 3.2. The method of expansion in powers of the distance to the magnetic axis | | | | CONTENTS | |--|----------| | | | ` 4 | | 3.3. The method of expansion in powers of the curvature | |---------------|---| | | 3.4. The method of helicoidal images | | | CHAPTER 4 — Axisymmetric magnetic configurations | | | 4.1. Equilibrium plasma-vacuum | | | 4.2. Stability | | | 4.3. Expansion in the neighbourhood of a magnetic surface | | | Appendix: MHD equations including resistivity in the axisymmetric case and plasma diffusion | | | References | | D. | PALUMBO — Some properties of isodynamical equilibrium configurations and of their generalization | | | | | | 1. Introduction (and Abstract) | | | 2. General aspects | | | 3. Axisymmetrical case | | | 4. Plane-symmetrical case | | | Stability of isodynamical axisymmetrical equilibrium configurations and of their
generalization References | | | 101010100 | | T. ·] | E. Stringer — Transport theory for toroidal plasmas | | | 1. Introduction | | | 2. The collision dominated plasma | | | 2.1. Resistive plasma 2.2. Non-linear solution | | | 2.3. The resistive/viscous plasma | | | 2.4. Stability of ambipolar states2.5. Electron thermal conductivity | | | 2.6. Competition between different effects | | | 3. The intermediate collisional regime | | | 3.1. Solution of kinetic equation | | | 3.2. Physical explanation3.3. Inclusion of the poloidal electric field | | | 3.4. Other transport coefficients | | | 4. The "BANANA" regime | | | 4.1. Trapped particle orbits 4.2. Physical origin of the diffusion | | | 4.3. The kinetic equation 4.4. Other transport coefficients | | | 5. Transport theory for Stellarators | | | 5.1. Collision dominated and intermediate regimes5.2. "BANANA" regime | | | References | | | | | H . 1 | P. Eubank — Problems in plasma physics | | | 1. Neutral beam injection | | | 1.1. Introduction1.2. Ion beam production and neutralization | | | 1.3. Beam absorption by the plasma | CONTENTS 5 | | | 1.4. Energy deposition1.5. Hybrid confinement geometries | | |--------------|----|---|-----| | | R | eferences | | | | 2. | Plasma heating by parametric instabilities | | | | R | eferences | | | | 3. | Review of far infrared laser technology and some plasma applications | | | | R | eferences | | | | | Determination of plasma ion temperatures from fast neutral atom emission eferences | | | | 5. | Plasma measurements with particle beams | | | | | 5.1. Introduction5.2. Binary beam plasma interactions5.3. Ion density5.4. Electron temperature5.5. Collective effects | | | | Re | eferences | | | G. | Vo | N GIERKE — Review of low-β toroidal machines | 191 | | | 1. | Introduction | | | | 2. | Systems of toroidal experiments and general features | | | | 3. | Internal conductor devices | | | | 4. | Stellarators | | | | | 4.1. $l = 2$ stellarators
4.2. $l = 3$ stellarators | | | | 5. | Tokamaks 5.1. The main properties of a Tokamak discharge 5.2. Equilibrium and stability of Tokamak discharges 5.3. The effect of non-axisymmetry 5.4. Final conclusions | | | | Re | ferences | | | E. C | | OBBIO — The neoclassical theory of transit time magnetic pumping (TTMP) toroidal geometry | 243 | | | | Introduction | | | | | A discussion of the physical principles | | | | | The model | | | | | The linear theory | | | | 5. | The non-linear theory | | | | 6. | TTMP and toroidal confinement | | | | Re | ferences | | | W .] | Но | OKE — Selected topics in radio frequency heating of toroidal plasmas | 267 | | | 1. | Introduction | | | | | Ohmic heating | | | | | Radio frequency heating | | | | | 3.1. Power available | | | | | - | |---|---|----------| | 6 | • | CONTENTS | | | 3.2. Ion cyclotron heating 3.2.1. General considerations | K. V. | |--------|--|-------| | | 3.2.2. Stellarator results a) Mode X and coupling efficiency b) Decrease in coupling at high power levels c) Effect of RF on containment d) Wave heating efficiency e) Ion cyclotron wave heating results electron heating | L | | | f) Ion heating g) Heating with fast hydromagnetic waves h) Plasmas consisting of two ion species 3.2.3. Some problems with RF heating on Tokamaks a) Lack of theoretical understanding of normal modes in a torus b) Lack of axial magnetic beach | L | | | c) The short wavelengths in high density plasma 3.2.4. RF heating on the Omega device 3.2.5. The proposal of Adam and Samain a) Two ion species b) Heating at ω = 2 w_{tc} | L | | | 3.2.6. Conclusions 3.3. Lower hybrid resonance heating 3.3.1. General considerations 3.3.2. Experimental situation a) Low power experiments | | | R | b) Experiments on plasma heating References | | | G: Ici | CHTCHENKO — Plasma heating at lower hybrid frequency | L | | 1. | Theoretical approach 1.1. Wave penetration 1.2. Coupling between electrostatic and electromagnetic waves, wave transformation 1.3. Absorption of electrostatic waves. Solution of the dispersion equations 1.4. Limitation of the electric field | | | 2. | 2. Potential application to the plasma heating in a Tokamak | N. K. | | G. Lı | ISITANO — RF-Plasma heating with L-Structures | 1. | | 1. | Wave and turbulence heating 1.1. Plasma wave frequency ranges 1.2. RF turbulence heating and choice of frequency 1.3. RF structures | | | 2. | 2. RF plasma heating systems 2.1. Stellarator W II b 2.1.1. Reproducibility of the OH discharge 2.1.2. Possible improvement in efficiency of the OH discharge 2.1.3. Maintenance of the plasma confinement times 2.1.4. X-ray yield 2.1.5. Preionization in Tokamaks 2.1.6. RF ion heating | 2. | | | 2.1.0. RF for hearing 2.2. "Pulsator I" Tokamak 2.3. "Dinnammare"-toroidal machine 2.4. LISA machine 2.4.1. Plasma filling with microwave guns 2.4.2. Plasma source for fast neutral injection heating 2.4.3. RF structures for plasma heating | 3. | | P | 2.4.3. KF structures for plasma heating References | ı | | CONTENTS | 7 | |----------|---| | | | | K. V. Robert | ${f S}$ — Numerical simulation of the behaviour of toroidal plasmas | 351 | |---|--|-----| | Lecture 1. | Numerical calculations in plasma physics 1. Introduction 2. The limitations of computers 3. A list of calculations References | | | Lecture 2. | Numerical solution of the Vlasov and Fokker-Planck equations 1. Introduction 2. Ion calculations 3. The general self-consistent problem 4. Other methods for solving Vlasov's equation 5. The Fokker-Planck equation References | | | Lecture 3. | Numerical solution of the magnetohydrodynamic equations 1. Introduction 2. The advective equation 3. Stability conditions: explicit and implicit schemes 4. Incompressible hydrodynamics 5. The diffusion equation 6. 1-dimensional magnetohydrodynamics 7. 2-dimensional magnetohydrodynamics 8. Calculation of toroidal equilibria References | | | Lecture 4. | A unified approach to the solution of initial value problem 1. Introduction 2. Initial value problems and the CRONUS program 3. The structure of CRONUS 4. Subprogram REPORT References | | | N. K. Winson | R — Numerical simulation | 375 | | 1. Introdu | ection | | | 1.1. Ge
1.1
1.1
1.1
1.1
1.2. To
1.2 | neral simulation techniques 1. Particle simulation 2. Vlasov simulation 3. Fluid simulation 4. Hybrid simulation roidal models 1. One-dimensional models | | | | .2. Two-dimensional models.3. Three-dimensional models | | | 1.3. Co | mparison of simulation techniques | | | 2.1. Ge
2.2. Par
2.3. Flu | al plasma physics ometry rticle physics uid physics nite differences and grids | | | 3.1. Int
3.1
3.1
3.1 | ny of a fluid code roduction 1. Components of the equations 2. The electrostatic potential 3. Acceleration 4. Diamagnetic effects and viscosity | | 3 CONTENTS | 3.3. Ini
3.4. Bo
3.4
3.4 | evelopment of the algorithm itial conditions bundary conditions 4.1. Diagnostics 4.2. Programming techniques americal results | | |--|---|-----| | 4.1. Eq
4.2. Pa
4.3. Or
4.4. Tv | stational results
quilibrium
rticle
ne-dimensional fluid
vo-dimensional fluid
mmary and perspectives | | | References | | | | M. Dobrowo | DLNY — Dynamic stabilisation of low frequency waves in inhomo- | | | geneous r | | 413 | | | | 115 | | 1. Introdu | | | | | ic stabilization of drift instabilities by high frequency fields | | | · | ic stabilization of plasma instabilities by low amplitude a.c. fields | | | | ic stabilization of drift waves by low amplitude a.c. electric fields | | | | cation of drift instabilities in the presence of other waves | | | References | | | | J. Wesson — | Dynamic and feedback stabilisation of plasmas | 427 | | 1. Introdu | action | | | | ic stabilisation | | | - | lized potential energy | | | | ations of dynamic stabilisation | | | | ck stabilisation | | | 6. δ -stabil | | | | | ck stabilisation of dissipative and reactive modes | | | | s affecting the required power | | | 9. Comme | | | | References | | | | R. Carruthe | RS — Problems with nuclear fusion reactors | 443 | | Lecture 1. | The relationship between the plasma parameters and parameters involved in the engineering studies of a fusion reactor | | | Lecture 2. | Factors determining the size and rating of a fusion reactor | | | | Economic factors of toroidal fusion reactors | | | | Size and allowable cost for a fusion reactor | | | | Basis for costing the components of a fusion reactor Cost of superconducting material Magnet winding costs Mechanical support material costs Thermal insulation costs | | | • | CONTENTS | | |---|----------|--| | | | | | | 2.5. Refrigeration costs2.6. Nuclear blanket costs | |-------------------|--| | | 3. Cost of toroidal reactors 3.1. Stellarator reactor 3.2. Steady state Tokamak 3.3. Reactors operating with deuterium fuel | | | References | | Lecture 4. | Review of other technological problems | | | Filling and heating Injection of new fuel Ash extraction and plasma wall interactions | | List of participa | nts | | | |