CONTENTS

Cour	se photograph	III
	AELBROECK — Introductory lecture: Instabilities and confinement in toroidal plasmas	11
H. A	. B. Bodin — High-beta toroidal pinches	19
Ī	I. Introduction	
2	2. Properties of axisymmetric pinch configurations	
	 2.1. Heating 2.2. Equilibrium 2.3. Stability 2.3.1. General considerations 2.3.2. Special cases 2.4. Growth rates 	
3	3. Experimental results on high-beta pinch configurations	
	3.1. Screw-pinches with circular cross-sections	
	3.2. The high-beta reversed field pinch 4. Conclusions	
	References	
	and plasma collisional transport in real space	55
	finement in closed magnetic configurations	63
	Preface	
	CHAPTER 1 — Toroidal magnetic configurations for plasma confinement. Magnetostatic equilibrium	
	1.1. Toroidal configurations and their topology	
	1.2. Natural coordinates1.3. Equilibrium in the case of axisymmetry	
	Chapter 2 — Magnetic stability	
:	2.1. Energy principle2.2. Localised displacements2.3. Localised criterion of the first kind2.4. The localised criterion of the second kind	
	CHAPTER 3 — Some methods for solving toroidal MHD equations	
	3.1. Intrinsic coordinates	
	3.2. The method of expansion in powers of the distance to the magnetic axis	

	CONTENTS

` 4

	3.3. The method of expansion in powers of the curvature
	3.4. The method of helicoidal images
	CHAPTER 4 — Axisymmetric magnetic configurations
	4.1. Equilibrium plasma-vacuum
	4.2. Stability
	4.3. Expansion in the neighbourhood of a magnetic surface
	Appendix: MHD equations including resistivity in the axisymmetric case and plasma diffusion
	References
D.	PALUMBO — Some properties of isodynamical equilibrium configurations and of their generalization
	1. Introduction (and Abstract)
	2. General aspects
	3. Axisymmetrical case
	4. Plane-symmetrical case
	 Stability of isodynamical axisymmetrical equilibrium configurations and of their generalization References
	101010100
T. ·]	E. Stringer — Transport theory for toroidal plasmas
	1. Introduction
	2. The collision dominated plasma
	2.1. Resistive plasma 2.2. Non-linear solution
	2.3. The resistive/viscous plasma
	2.4. Stability of ambipolar states2.5. Electron thermal conductivity
	2.6. Competition between different effects
	3. The intermediate collisional regime
	3.1. Solution of kinetic equation
	3.2. Physical explanation3.3. Inclusion of the poloidal electric field
	3.4. Other transport coefficients
	4. The "BANANA" regime
	4.1. Trapped particle orbits 4.2. Physical origin of the diffusion
	4.3. The kinetic equation 4.4. Other transport coefficients
	5. Transport theory for Stellarators
	5.1. Collision dominated and intermediate regimes5.2. "BANANA" regime
	References
H . 1	P. Eubank — Problems in plasma physics
	1. Neutral beam injection
	1.1. Introduction1.2. Ion beam production and neutralization
	1.3. Beam absorption by the plasma

CONTENTS 5

		1.4. Energy deposition1.5. Hybrid confinement geometries	
	R	eferences	
	2.	Plasma heating by parametric instabilities	
	R	eferences	
	3.	Review of far infrared laser technology and some plasma applications	
	R	eferences	
		Determination of plasma ion temperatures from fast neutral atom emission eferences	
	5.	Plasma measurements with particle beams	
		5.1. Introduction5.2. Binary beam plasma interactions5.3. Ion density5.4. Electron temperature5.5. Collective effects	
	Re	eferences	
G.	Vo	N GIERKE — Review of low-β toroidal machines	191
	1.	Introduction	
	2.	Systems of toroidal experiments and general features	
	3.	Internal conductor devices	
	4.	Stellarators	
		4.1. $l = 2$ stellarators 4.2. $l = 3$ stellarators	
	5.	Tokamaks 5.1. The main properties of a Tokamak discharge 5.2. Equilibrium and stability of Tokamak discharges 5.3. The effect of non-axisymmetry 5.4. Final conclusions	
	Re	ferences	
E. C		OBBIO — The neoclassical theory of transit time magnetic pumping (TTMP) toroidal geometry	243
		Introduction	
		A discussion of the physical principles	
		The model	
		The linear theory	
	5.	The non-linear theory	
	6.	TTMP and toroidal confinement	
	Re	ferences	
W .]	Но	OKE — Selected topics in radio frequency heating of toroidal plasmas	267
	1.	Introduction	
		Ohmic heating	
		Radio frequency heating	
		3.1. Power available	

		-
6	•	CONTENTS

	3.2. Ion cyclotron heating 3.2.1. General considerations	K. V.
	3.2.2. Stellarator results a) Mode X and coupling efficiency b) Decrease in coupling at high power levels c) Effect of RF on containment d) Wave heating efficiency e) Ion cyclotron wave heating results electron heating	L
	 f) Ion heating g) Heating with fast hydromagnetic waves h) Plasmas consisting of two ion species 3.2.3. Some problems with RF heating on Tokamaks a) Lack of theoretical understanding of normal modes in a torus b) Lack of axial magnetic beach 	L
	 c) The short wavelengths in high density plasma 3.2.4. RF heating on the Omega device 3.2.5. The proposal of Adam and Samain a) Two ion species b) Heating at ω = 2 w_{tc} 	L
	3.2.6. Conclusions 3.3. Lower hybrid resonance heating 3.3.1. General considerations 3.3.2. Experimental situation a) Low power experiments	
R	b) Experiments on plasma heating References	
G: Ici	CHTCHENKO — Plasma heating at lower hybrid frequency	L
1.	 Theoretical approach 1.1. Wave penetration 1.2. Coupling between electrostatic and electromagnetic waves, wave transformation 1.3. Absorption of electrostatic waves. Solution of the dispersion equations 1.4. Limitation of the electric field 	
2.	2. Potential application to the plasma heating in a Tokamak	N. K.
G. Lı	ISITANO — RF-Plasma heating with L-Structures	1.
1.	 Wave and turbulence heating 1.1. Plasma wave frequency ranges 1.2. RF turbulence heating and choice of frequency 1.3. RF structures 	
2.	2. RF plasma heating systems 2.1. Stellarator W II b 2.1.1. Reproducibility of the OH discharge 2.1.2. Possible improvement in efficiency of the OH discharge 2.1.3. Maintenance of the plasma confinement times 2.1.4. X-ray yield 2.1.5. Preionization in Tokamaks 2.1.6. RF ion heating	2.
	2.1.0. RF for hearing 2.2. "Pulsator I" Tokamak 2.3. "Dinnammare"-toroidal machine 2.4. LISA machine 2.4.1. Plasma filling with microwave guns 2.4.2. Plasma source for fast neutral injection heating 2.4.3. RF structures for plasma heating	3.
P	2.4.3. KF structures for plasma heating References	ı

CONTENTS	7

K. V. Robert	${f S}$ — Numerical simulation of the behaviour of toroidal plasmas	351
Lecture 1.	Numerical calculations in plasma physics 1. Introduction 2. The limitations of computers 3. A list of calculations References	
Lecture 2.	Numerical solution of the Vlasov and Fokker-Planck equations 1. Introduction 2. Ion calculations 3. The general self-consistent problem 4. Other methods for solving Vlasov's equation 5. The Fokker-Planck equation References	
Lecture 3.	Numerical solution of the magnetohydrodynamic equations 1. Introduction 2. The advective equation 3. Stability conditions: explicit and implicit schemes 4. Incompressible hydrodynamics 5. The diffusion equation 6. 1-dimensional magnetohydrodynamics 7. 2-dimensional magnetohydrodynamics 8. Calculation of toroidal equilibria References	
Lecture 4.	A unified approach to the solution of initial value problem 1. Introduction 2. Initial value problems and the CRONUS program 3. The structure of CRONUS 4. Subprogram REPORT References	
N. K. Winson	R — Numerical simulation	375
1. Introdu	ection	
1.1. Ge 1.1 1.1 1.1 1.1 1.2. To 1.2	neral simulation techniques 1. Particle simulation 2. Vlasov simulation 3. Fluid simulation 4. Hybrid simulation roidal models 1. One-dimensional models	
	.2. Two-dimensional models.3. Three-dimensional models	
1.3. Co	mparison of simulation techniques	
2.1. Ge 2.2. Par 2.3. Flu	al plasma physics ometry rticle physics uid physics nite differences and grids	
3.1. Int 3.1 3.1 3.1	ny of a fluid code roduction 1. Components of the equations 2. The electrostatic potential 3. Acceleration 4. Diamagnetic effects and viscosity	

3 CONTENTS

3.3. Ini 3.4. Bo 3.4 3.4	evelopment of the algorithm itial conditions bundary conditions 4.1. Diagnostics 4.2. Programming techniques americal results	
4.1. Eq 4.2. Pa 4.3. Or 4.4. Tv	stational results quilibrium rticle ne-dimensional fluid vo-dimensional fluid mmary and perspectives	
References		
M. Dobrowo	DLNY — Dynamic stabilisation of low frequency waves in inhomo-	
geneous r		413
		115
1. Introdu		
	ic stabilization of drift instabilities by high frequency fields	
·	ic stabilization of plasma instabilities by low amplitude a.c. fields	
	ic stabilization of drift waves by low amplitude a.c. electric fields	
	cation of drift instabilities in the presence of other waves	
References		
J. Wesson —	Dynamic and feedback stabilisation of plasmas	427
1. Introdu	action	
	ic stabilisation	
-	lized potential energy	
	ations of dynamic stabilisation	
	ck stabilisation	
6. δ -stabil		
	ck stabilisation of dissipative and reactive modes	
	s affecting the required power	
9. Comme		
References		
R. Carruthe	RS — Problems with nuclear fusion reactors	443
Lecture 1.	The relationship between the plasma parameters and parameters involved in the engineering studies of a fusion reactor	
Lecture 2.	Factors determining the size and rating of a fusion reactor	
	Economic factors of toroidal fusion reactors	
	Size and allowable cost for a fusion reactor	
	 Basis for costing the components of a fusion reactor Cost of superconducting material Magnet winding costs Mechanical support material costs Thermal insulation costs 	

•	CONTENTS	

	2.5. Refrigeration costs2.6. Nuclear blanket costs
	 3. Cost of toroidal reactors 3.1. Stellarator reactor 3.2. Steady state Tokamak 3.3. Reactors operating with deuterium fuel
	References
Lecture 4.	Review of other technological problems
	 Filling and heating Injection of new fuel Ash extraction and plasma wall interactions
List of participa	nts