Contents

	Preface	ix
	Plasma formulary	xi
	Part I Introduction to plasma theory	
1	Introduction	3
	1.1 Preliminary remarks	3
	1.2 Langmuir waves and ion sound waves	5
	1.3 Cerenkov emission and Landau damping	6
	1.4 The response tensor	9
	1.5 The Landau prescription	12
	Exercise set 1	14
2	The response of an unmagnetized plasma	17
	2.1 The cold plasma approach	17
	2.2 The Vlasov approach	19
	2.3 Maxwellian distributions	20
	2.4 The dispersion equation	21
	2.5 The absorption coefficient	23
	2.6 Formal theory of weakly damped waves	25
	Exercise set 2	27
	Part II Instabilities in unmagnetized plasmas	
3	Reactive instabilities	33
	3.1 Effect of a beam on wave dispersion	33
	3.2 The counter-streaming instability	34
	3.3 The weak-beam instability	36
	3.4 Suppression due to increasing velocity spread	36
	3.5 The Buneman instability	38
	3.6 The Weibel instability	39

i i	,	Contents

	3.7 Interpretation of complex solutions	40
	Exercise set 3	42
4	Kinetic instabilities	45
	4.1 The bump-in-tail instability	45
	4.2 Quasilinear relaxation: the time-asymptotic state	48
	4.3 Current and ion-beam driven growth of ion sound waves	50
	4.4 Heat conduction and ion sound turbulence	52
	4.5 Loss cone instability for Langmuir waves	53
	4.6 Axisymmetric distributions: general case	56
	Exercise set 4	61
5	Particle motions in waves	63
	5.1 Perturbations in the orbit of a single particle	63
	5.2 Phase bunching and reactive growth	66
	5.3 Wave trapping	69
	5.4 Interpretation of the kinetic instability	72
	5.5 The forward-scattering method and the time-asymptotic	
	assumption	74
	5.6 The ponderomotive force	76
	Exercise set 5	77
6	Weak turbulence theory	79
	6.1 The emission formula: Cerenkov emission	79
	6.2 Probabilities for nonlinear processes	81
	6.3 Kinetic equations	84
	6.4 Scattering of Langmuir waves off thermal ions	87
	6.5 Scattering of Langmuir waves by ion sound waves	91
	6.6 Plasma emission	94
	Exercise set 6	97
7	Nonlinear instabilities and strong turbulence	100
	7.1 Nonlinear correction to the dispersion equation	100
	7.2 Parametric instabilities	104
	7.3 The free electron maser: plasma laser	107
	7.4 The Zakharov equations and strong Langmuir turbulence	111
	7.5 Solitons	113
	Exercise set 7	115
	Part III Collision-dominated magnetized plasmas	
8	Magnetohydrodynamics	119
	8.1 The MHD equations	119

	Contents	vii
	8.2 Small amplitude MHD waves	121
	8.3 Surface waves	124
	8.4 The MHD energy principle	127
	8.5 Jump conditions at a discontinuity	129
	8.6 MHD shock waves	132
	Exercise set 8	136
9	MHD instabilities	139
	9.1 Ideal MHD instabilities	139
	9.2 The Kelvin-Helmholtz instability	144
	9.3 Collisions and transport coefficients	146
	9.4 Magnetic merging and reconnection	149
	9.5 Tearing instabilities	153
	Exercise set 9	157
	Part IV Instabilities in magnetized collisionless plasmas	
10	Dispersion in a magnetized plasma	163
	10.1 Dielectric tensors	163
	10.2 The cold plasma modes	167
	10.3 The magnetoionic modes	170
	10.4 Low frequency modes	175
	10.5 Quasilinear equations for $\mathbf{B} \neq 0$	179
	Exercise set 10	181
11	Electron cyclotron maser emission	184
	11.1 Classification of gyromagnetic processes	184
	11.2 The gyrotron instability	187
	11.3 The parallel-driven cyclotron maser	190
	11.4 The perpendicular-driven cyclotron maser	194
	11.5 Applications of electron cyclotron maser emission	200
	11.6 Phase bunching and wave trapping	203
	Exercise set 11	206
12	Instabilities in warm and in inhomogeneous plasmas	209
	12.1 Longitudinal waves in warm plasmas	209
	12.2 'Parallel' cyclotron waves	213
	12.3 Ion cyclotron waves in multi-ion plasmas	215
	12.4 The Bernstein modes	218
	12.5 Drift motions and the drift kinetic equation	221
	12.6 Dielectric tensor for an inhomogeneous plasma	224
	12.7 Drift waves	227
	Exercise set 12	230

viii Contents

13	Instabilities due to anisotropic fast particles	233
	13.1 Resonant scattering	233
	13.2 Whistler waves in the magnetosphere: quasilinear theory	238
	13.3 Discrete VLF emissions	239
	13.4 Scattering of streaming cosmic rays	242
	13.5 Small amplitude Fermi acceleration	244
	13.6 Acceleration at shock fronts	247
	Exercise set 13	250
	Appendix A The plasma dispersion function	252
	Appendix B Bessel functions	253
	Appendix C Collision frequencies	255
	Appendix D Transport coefficients	257
	Bibliographical notes	260
		264
	References	264
	List of commonly used symbols	269
	Author index	273
	Subject index	276

