## CONTENTS

## CHAPTER 1 FUNDAMENTAL CONCEPTS, 1

- 1-1 The Scope of the Study of Ionized Gases, 2
- 1-2 Laboratory and Center-of-mass Coordinates and the Asymptotic Aspects of Nonrelativistic Elastic Collisions, 2
  - A. Velocities and Kinetic Energy, 3
  - B. Angular Momentum and Moment of Inertia, 6
  - C. Scattering Angles, 7
  - D. Relationship between Elements of Solid Angle in the Lab and CM Systems, 8
- 1-3 Inelastic and Relativistic Collisions, 8
- 1-4 The Collision Cross Section Concept, 10
  - A. The Microscopic Elastic Scattering Cross Section,  $q_s$ , 10
  - B. The Macroscopic Scattering Cross Section,  $Q_s$ , and the Scattering Mean Free Path,  $\lambda_s$ , 13
  - C. Relationship between Cross Sections in the Lab and CM Systems, 14
  - D. Cross Sections for Reactions other than Elastic Scattering, 14

- E. Reaction Rates and Particle Flux for Monoenergetic Projectiles, 15
- F. Reactions Involving Polyenergetic Projectiles, 15
- G. The Probability of Collision, P, the Collision Frequency,  $\nu$ , and the Mean Free Time,  $\tau$ , 16
- 1-5 The Average Energy Loss and Angular Scattering Distribution in the Classical Collision of Smooth Elastic Spheres, 17
  - A. m = M, 20
  - B.  $m \ll M$ , 21
  - C. Two Species of Particles with Maxwellian Velocity Distributions Corresponding to Different Temperatures, 22
- 1-6 The Diffusion and Viscosity Cross Sections, 23
  - A. The Diffusion Cross Section,  $q_D$ , 23
  - B. The Viscosity Cross Section,  $q_{v}$ , 25
- 1-7 Potential Functions Used to Describe the Interaction between Particles, 25
  - A. Potentials Depending Only on the Separation Distance, 25
  - B. Potentials Involving the Relative Angular Orientation, 28
- 1-8 The Polarization Attraction of Molecules by Charged Particles, 28
  References, 31

# CHAPTER 2 BACKGROUND INFORMATION FROM THE KINETIC THEORY OF GASES, 32

- 2-1 Thermodynamic Equilibrium and the Scope of Kinetic Theory, 32
- 2-2 The Molecular Velocity and Energy Distributions of a Gas in Thermodynamic Equilibrium, 33
  - A. A Single Gas with No Applied Field, 33
  - B. Mixtures of Gases, 36
  - C. A Gas in a Force Field, 38
- 2-3 The Molecular Diameter, Mean Free Path, and Collision Frequency, 38
  - A. Equations Derived from the Elastic Sphere Model, 38
  - B. Variation of the Mean Free Path and Collision Frequency with Density and Temperature, 40

- C. Numerical Results for Molecules in Pure Gases, 40
- D. The Mean Free Path of a Charged Particle in a Highly Ionized Gas, 41
- 2-4 The Mean Distance between Molecules in a Gas, 41
- 2-5 The Relaxation Time of a Gas, 42
- 2-6 The Number of Molecules Crossing Unit Area in a Gas per Second, 43
- 2-7 Equations of State, 44
- 2-8 Diffusion, Viscosity, and Thermal Conductivity, 46
- 2-9 Derivation of the Diffusion Coefficient by the Mean Free Path Method, 47
- 2-10 Rigorous Expressions for the Diffusion Coefficient, 50
- 2-11 Phase Space and the Liouville Theorem, 51
- 2-12 The Boltzmann Equation, 54
- 2-13 Methods of Solution of the Boltzmann Equation, 56
- 2-14 Limitations of the Boltzmann Theory, 57 References, 57

## CHAPTER 3 THE THEORY OF ELASTIC SCATTERING IN A CENTRAL FORCE FIELD, 60

part  $\mathscr{A}$ . The two-body central force problem in classical mechanics, 60

- 3-1 Separation of the Center-of-Mass Motion from the Total Motion, 60
- 3-2 Reduction to a Two-Body Problem in Two Dimensions, 61
- 3-3 Reduction to the Equivalent One-Body Problem in One Dimension, 65
- 3-4 The Scattering Angle in the Center-of-Mass System, 65
- 3-5 The Symmetry of the Trajectories in the Center-of-Mass System, 67
- 3-6 Classification of the Orbits: Ion-Molecule Reactions, 67A. Physical Basis, 67
  - B. Classification of the Orbits in the Polarization Potential Field, 71
- 3-7 Evaluation of the Scattering Cross Section, 75
- 3-8 Coulomb Scattering, 76
- 3-9 Variation of the Differential Scattering Cross Section with Velocity, 78

# part $\mathcal{G}$ . The quantum theory of elastic scattering, 79

- 3-10 The Inadequacy of the Classical Treatment of Scattering, 79
- 3-11 Scattering by a Center of Force of Infinite Range, 80
- 3-12 Requirements on Angular Resolving Power for Measurements of the Total Elastic Scattering Cross Section, 82
- 3-13 Separation of the Center-of-Mass Motion from the Total Motion, 83
- 3-14 The Quantum Mechanical Formulation of the Scattering Problem, 85
  - A. The Incident Beam and Its Wave Function, 85
  - B. The Scattered and Total Wave Functions, 88
- 3-15 Solution of the Wave Equation by the Method of Partial Waves, 89
  - A. Separation of the Wave Equation, 89
  - B. Expansion of the Wave Functions in Partial Waves, 90
  - C. The Scattering Cross Section, 93
  - D. The Relation between the Classical Impact Parameter and the Partial Waves, 94
  - E. The Physical Significance of the Phase Shifts as Illustrated by s-wave Scattering by a Spherical Potential Well, 97
  - F. Calculation of the Phase Shifts, 100
- 3-16 The Born Approximation, 102
- 3-17 Coulomb Scattering in the Born Approximation, 105
- 3-18 The Scattering of Identical Particles, 106 References, 109

# CHAPTER 4 MEASUREMENT AND CALCULATION OF ELASTIC SCATTERING CROSS SECTIONS, 111

PART  $\mathscr{A}$ . THE ELASTIC SCATTERING OF ELECTRONS, 111

- 4-1 Measurement of the Total Elastic Scattering Cross Section, 112
  - A. Direct Single-beam Measurements, 113
  - B. Diffusion Methods, 119
  - C. Microwave Methods, 120
  - D. The Drift Velocity Method, 123
  - E. Crossed-Beam Methods, 128
- 4-2 Measurement of the Angular Distribution of Elastically Scattered Electrons, 133

- 4-3 The Calculation of Electron Momentum Transfer Cross Sections from Differential Scattering Data, 140
- 4-4 Calculations on the Elastic Scattering of Electrons, 141

  PART 3. THE ELASTIC SCATTERING

  OF HEAVY PARTICLES, 144
- 4-5 Angular Scattering Distributions for Heavy Particles, 146
- 4-6 Techniques Used in Thermal Beam-Scattering Studies, 148
  - A. The Apparatus of Bernstein and Co-workers, 149
  - B. The General Dynamics Modulated-Beam Scattering Apparatus, 151
- 4-7 Thermal Beam Scattering—Theory and Experimental Results, 153
  - A. The Total Elastic Scattering Cross Section for an Attractive Inverse-Power-Law Potential—The Massey-Mohr Theory, 153
  - B. Rainbow Scattering, 157
  - C. Quantum Effects in Thermal Beam Scattering, 157
  - D. Scattering of Metastable Atoms, 158
  - E. Inelastic Collisions at Thermal Energies, 159
- 4-8 Beam Techniques Used for Studies of the Elastic Scattering of Heavy Particles, 160
  - A. The Apparatus of Cramer and Simons, 160
  - B. The Neutral Beam Apparatus of Amdur and Coworkers, 163
- 4-9 Results of Elastic Scattering Studies with Fast Beams, 163
- 4-10 Investigations of the Screened Coulomb Potential by Scattering of 25-100 kev Beams, 165
  References, 167

## CHAPTER 5 IONIZATION AND EXCITATION BY ELECTRON IMPACT, 172

5-1 Introduction, 173

part  $\mathscr{A}$ . Ionization of atoms and molecules by electron impact, 174

- 5-2 General Methods of Measurement of Ionization Cross Sections, 174
  - A. Single-beam Experiments Involving the Total Collection of Residual Positive Ions: Apparent Ionization Cross Sections, 174

- B. Single-Beam Experiments Involving e/m Analysis of Residual Positive Ions: True Ionization Cross Sections, 175
- C. Crossed-beam Experiments on Unstable Target Particles, 176
- 5-3 Measurement of Ionization Cross Sections for Stable Atoms and Molecules, 176
  - A. Apparatus, 177
  - B. Experimental Data on Stable Systems, 183
- 5-4 Studies of the Ionization of Unstable Targets by Electron Impact; Crossed-Beam Experiments, 190
  - A. Apparatus, 190
  - B. Experimental Results, 195
- 5-5 Threshold Ionization and Fine Structure Studies, 202 A. Experimental Techniques, 202
  - B. Theoretical Predictions and Experimental Results, 204
- 5-6 Angular and Energy Distributions of Inelastically Scattered Electrons, 205
- 5-7 Energy Distributions of Ions and Electrons Produced by Electron Impact, 208
  - A. Ions, 208
  - B. Electrons, 211

PART  $\mathcal{B}$ . EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT, 212

- 5-8 General Methods for Experimental Determination of Excitation Cross Sections, 213
- 5-9 Techniques Used in Recent Excitation Experiments, 214
  - A. Apparatus Used by Stebbings et al. for Measurement of the Ratio of Cross Sections for Production of Metastable Hydrogen Atoms and Lyman-α Radiation, 214
  - B. The Secondary Electron Detection Method for the Study of Excitation to Metastable States, 216
  - C. Schulz's Trapped-Electron Method, 218
  - D. Schulz's Double Electrostatic Analyzer, 220
- 5-10 Review of Recent Excitation Experiments, 222
  - A. Electronic Excitation of Atomic Hydrogen, 222
  - B. Electronic Excitation of the Noble Gas Atoms, 223
  - C. Electronic Excitation of Mercury Atoms, 224
  - D. Excitation of Nitrogen Molecules, 224
  - E. Excitation of Oxygen Molecules, 227

- F. Excitation of Molecular Hydrogen, 230
- G. Other Excitation and De-Excitation Studies, 232 References, 232

Supplementary Bibliography on Thermal Excitation, Ionization, and Dissociation, 236

## CHAPTER 6 INELASTIC COLLISIONS BETWEEN HEAVY PARTICLES, 238

Part  $\mathcal{A}$ . Collisions at low energies (thermal to 500 eV), 239

- 6-1 Classification of Inelastic Collisions, 239
- 6-2 Charge Transfer (Charge Exchange), 240
  - A. The Adiabatic Hypothesis: Symmetric and Asymmetric Charge Transfer, 240
  - B. Experimental Methods of Studying Charge Transfer at Low Energies, 244
  - C. Charge Transfer Data (Low Energy), 251
- 6-3 Ion-Atom Interchange, 257
- 6-4 Ionization and Stripping, 260
- 6-5 Dissociation, 261

PART  $\mathcal{B}$ . COLLISIONS AT HIGH ENERGIES (ABOVE 500 EV), 261

- 6-6 Charge Transfer, 261
  - A. Experimental Methods of Studying Charge Transfer at High Energies, 261
  - B. Charge Transfer Data (High Energy), 269
- 6-7 Ionization and Stripping, 276
  - A. Experimental Techniques for Studying Heavy Particle Ionization and Stripping, 277
  - B. Data on High-Energy Ionization and Stripping, 281
- 6-8 Dissociation, 289
- 6-9 Excitation, 292
  - A. Experimental Techniques Used in Excitation Studies, 294
  - B. Results, 297

PART  $\mathscr{C}$ . THE THEORY OF INELASTIC COLLISIONS, 300

6-10 Time-Independent and Time-Dependent Descriptions of Scattering, 301

- 6-11 Excitation and Ionization of the Hydrogen Atom by Electron Impact, 303
  - A. Definition of the Excitation Cross Section, 304
  - B. Separation of the Time and Space Dependence of the Wave Function, 304
  - C. Calculation of the Excitation Cross Section, 305
  - D. The Excitation Cross Section in the First Born Approximation, 308
- 6-12 General Two-Body Collisions, 309
- 6-13 Rearrangement Collisions, 311
  - A. Exchange Collisions between Electrons and Hydrogen Atoms, 311
  - B. The Effect of the Exclusion Principle on Exchange Scattering, 314
  - C. General Rearrangement Collisions, 314
- 6-14 Quantum Mechanical Approximations, 315
  - A. The Born Approximation: the Born-Oppenheimer (BO) Approximation, 316
  - B. The Distorted Wave (DW) Approximation, 316
  - C. The Perturbed Stationary State (PSS) and Perturbed Rotating Atom (PRA) Approximations, 317
  - D. Other Approximations, 319
- 6-15 Semiclassical and Classical Methods, 319
  - A. The Semiclassical Impact Parameter Method, 319
  - B. The Classical Method of Gryziński, 320
- 6-16 The Ionization of Atoms by Fast Electrons and Ions, 322
  - A. The Total Ionization Cross Section in the First Born Approximation, 322
  - B. Comparison between Theory and Experiment, 328 References, 331

## CHAPTER 7 PHOTOABSORPTION IN GASES, 338

- 7-1 Mechanisms of Photoabsorption, 339
- 7-2 Experimental Methods of Studying Photoabsorption, 339
- 7-3 Experimental Results, 343
- 7-4 Photoionization, 345
  - A. General Features, 345
  - B. Theory, 360
  - C. Production of Artificial Ion Clouds in the Upper Atmosphere, 365

References, 366

#### ' CHAPTER 8 NEGATIVE IONS, 368

- 8-1 The Structure and Spectra of Negative Ions: The Electron Affinity, 369
  - A. Negative Atomic Ions, 369
  - B. Negative Molecular Ions, 376
- 8-2 Mechanisms for Formation of Negative Ions, 382
  - A. The Attachment of Free Electrons to Neutral Atoms, 382
  - B. Negative Ion Formation in Collisions of Electrons with Molecules, 385
- 8-3 Mechanisms for Destruction of Negative Ions, 386
- 8-4 Descriptions of the Probabilities of Negative Ion Formation and Destruction, 387
- 8-5 Experimental Methods for Study of Negative Ion Formation, 388
  - A. Swarm Methods, 388
  - B. Beam Methods, 393
- 8-6 Experimental Methods for Study of Electron Detachment, 398
  - A. Collisional Detachment, 398
  - B. Detachment by Electric Fields, 399
  - C. Photodetachment, 401
- 8-7 Data on Negative Ion Formation and Electron Detachment, 403
  - A. Oxygen, 404
  - B. Hydrogen, 413
  - C. Carbon, 415
  - D. Water Vapor, 416
  - E. Carbon Monoxide and Carbon Dioxide, 417
  - F. Sulfur Hexafluoride, 417
  - G. Other Gases, 420
- 8-8 The Role of Negative Ions in Nature and in the Laboratory, 420
  References, 422

## CHAPTER 9 THE MOBILITY OF GASEOUS IONS, 426

- 9-1 General Considerations, 427
- 9-2 Classical Mobility Theory, 429
  - A. The Theories of Langevin, 429
  - B. The Chapman-Enskog Theory, 434
  - C. The Theory of Wannier, 436
  - D. Other Classical Calculations, 439

- 9-3 Quantum Mechanical Mobility Theory, 441A. Quantal Calculations on Specific Systems, 441
  - B. General Quantum Mechanical Theory, 442
- 9-4 The A.C. Mobility, and the Mobility in Magnetic Fields, 447
- 9-5 Clustering, 448
- 9-6 Ion-Molecule Reactions other than Clustering, 451
- 9-7 The Mobility of Ions in Mixtures of Gases: Blanc's Law, 455
- 9-8 Methods Used in the Measurement of Mobilities, 457
  - A. The "Four-Gauze" Electrical Shutter Method of Tyndall and his Co-workers, 457
  - B. The Method of Bradbury and Nielsen, 459
  - C. Hornbeck's Method, 461
  - D. The Method of Biondi and Chanin, 462
  - E. The Ambipolar Diffusion Method, 463
- 9-9 Experimental Data and Their Comparison with Theoretical Predictions, 463
  - A. The Noble Gases, 465
  - B. Hydrogen, 472
  - C. Nitrogen, 473
  - D. Carbon Monoxide, 479
  - E. Oxygen, 479
  - F. Positive Alkali Ions in Monatomic and Diatomic Gases, 481
  - G. Negative Ions of Sulfur Hexafluoride, 482
  - H. Water Vapor, 483
  - I. Mercury Vapor, 483

References, 483

#### CHAPTER 10 DIFFUSION OF ELECTRONS AND IONS, 488

- 10-1 Fick's Law of Diffusion and the Diffusion Coefficient, 489
- 10-2 The Relationship between the Coefficients of Diffusion and Mobility, 490
- 10-3 The Steady-state Spatial Distribution of Ions in an Electrostatic Field, 491
- 10-4 The Spreading of a Cloud of Particles by Diffusion through an Unbounded Gas, 492
- 10-5 The Spreading of an Ion Cloud during Its Drift in an Electric Field, 493
- 10-6 The Diffusion Equation, 494
- 10-7 Boundary Conditions, 496

- 10-8 Solution of the Time-Independent Diffusion Equation for Various Geometries, 498
  - A. Infinite Parallel Plates, 498
  - B. Rectangular Parallelepiped, 499
  - C. Spherical Cavity, 501
  - D. Cylindrical Cavity, 503
- 10-9 The Diffusion and Mobility of Charged Particles in a Magnetic Field, 506
  - A. The Free Motion of a Charged Particle in Crossed Electric and Magnetic Fields, 507
  - B. Evaluation of the Diffusion and Mobility Coefficients in a Magnetic Field, 508
  - C. Dependence of the Diffusion Coefficient on the Magnetic Flux Density and the Mass of the Particles, 512
- 10-10 Ambipolar Diffusion, 512
  - A. The Coefficient of Ambipolar Diffusion, 513
  - B. Experimental Results, 514
- 10-11 Mutual Repulsion of Charged Particles in a Gas, 518
  - A. Mutual Repulsion, Diffusion Effects Being Ignored, 519
  - B. Comparison of the Effects of Mutual Repulsion and Diffusion, 520

References, 521

## CHAPTER 11 ELECTRONIC ENERGY DISTRIBUTIONS AND DRIFT VELOCITIES, 522

- 11-1 Differences between Electronic and Ionic Behavior in Gases, 522
- 11-2 Experimental Methods of Studying Slow Electrons in Gases, 523
  - A. The Townsend Diffusion Method, 524
  - B. The Electrical Shutter Method of Measuring Drift Velocities, 528
  - C. Single-electron Time-of-flight Determinations of Drift Velocities and Diffusion Coefficients, 530
  - D. Electrical Probe Measurements of Electron Energies, 531
  - E. Microwave Measurements of Electron Energies, 532
  - F. The Hornbeck Method of Measuring Drift Velocities, 532
  - G. The Ionization Chamber Method of Drift Velocity Measurements, 532

- H. Electromagnetic Methods of Determining Electron Energies and Number Densities, 533
- 11-3 Experimental Data on Electron Energies and Drift Velocities, 533
- 11-4 The Rigorous Theory of Electronic Motion in Gases, 548
  - A. Druyvesteyn's Calculation of the Electronic Energy Distribution, 548
  - B. Subsequent Work, 549
  - C. Margenau's Calculation of the Energy Distribution and Drift Velocity, 551
- 11-5 Energy Losses in Collisions and the Transient Motion of Electrons, 556
  References, 561

#### CHAPTER 12 RECOMBINATION, 563

- 12-1 The Recombination Coefficient, 564
- 12-2 Recombination in a Multiple-Component System, 565
   A. Secondary Ions Formed in Collisions between Primary Ions and Gas Atoms, 565
  - B. Ion Production Due to Metastable Atoms, 569
- 12-3 Mechanisms of Ion-Ion Recombination, 570
- 12-4 Ion-Ion Recombination Theory, 571
  - A. Three-body Recombination, 571
  - B. Radiative Recombination, 584
  - C. Mutual Neutralization, 584
- 12-5 Mechanisms and Theory of Electron-Ion Recombination,588
  - A. Separate Mechanisms, 588
  - B. Collisional-radiative Recombination, 594
- 12-6 Experimental Studies of Ion-Ion Recombination, 601
  - A. X-ray Ionization Experiments on Three-body Recombination, 601
  - B. Pulsed-discharge Afterglow Experiments on Twobody Recombination, 603
- 12-7 Experimental Studies of Electron-Ion Recombination, 604
  - A. Techniques Used in Microwave Experiments, 605
  - B. Results of Low-density Microwave Recombination Studies, 607
  - C. Other Types of Experimental Electron-ion Recombination Studies, 610

- 12-8 The Effects of Diffusion in Recombination Experiments, 611
  - A. Gray and Kerr's Analysis, 611
  - B. Application of Gray and Kerr's Conclusions to Interpretation of Microwave Recombination Experiments, 615

References, 623

#### CHAPTER 13 SURFACE PHENOMENA, 626

- 13-1 The Adsorption of Gases on Surfaces, 626
  - A. The Formation of Adsorbed Gas Layers, 627
  - B. The Effects of Adsorbed Gases, 628
  - C. The Production of Atomically Clean Surfaces, 628
- 13-2 The Impact of Heavy Particles on Surfaces, 629
  - A. Ejection of Secondary Electrons, 629
  - B. Ejection of Heavy Particles—Sputtering, 649
  - C. Reflection of Positive Ions from Surfaces, 655
  - D. Emission of Electromagnetic Radiation by Surfaces under Particle Bombardment, 657
- 13-3 The Impact of Electrons on Surfaces, 658
  - A. Ejection of Secondary Electrons, 659
  - B. Reflection of Electrons from Surfaces, 667
- 13-4 Photoemission, 670
  - A. General Considerations, 670
  - B. The Photoelectric Threshold and Determination of Work Functions, 671
  - C. Spectral Distributions, 673
  - D. Energy Distributions of Photoelectrons, 679
- 13-5 Thermionic Emission, 679
  - A. Thermionic Emission of Electrons, 680
  - B. Thermionic Emission of Ions, 683
- 13-6 Surface Ionization, 684
  - A. Theory of Surface Ionization, 684
  - B. Experimental Investigations, 685 References, 688

## APPENDIX I THE DISTINCTION BETWEEN A PLASMA AND AN ORDINARY IONIZED GAS, 693

- 1 The Debye Length, 693
- 2 Multiple Small-Angle Coulomb Scattering, 697 References, 700

## APPENDIX II LANGEVIN'S CALCULATION OF THE DIFFUSION AND MOBILITY COEFFICIENTS, 701

- 1 The Momentum Transfer Equation, 701
- 2 Calculation of the Momentum Transfer Produced by Collisions, 705
- 3 The Mutual Diffusion Coefficient for the Elastic Sphere Model, 713
- 4 The Influence of the Temperature, 715
- 5 Calculation of the Mobility, 715 References, 726

#### APPENDIX III TABLES, 727

AUTHOR INDEX, 737

SUBJECT INDEX, 753