Contents

1.	AN	INTR	ODUCTION AND SOME BASIC THEORY	1		
	1.1					
		1.1b 1.1c	Particle motion in phase space, 1 The Hamiltonian form of the equations of motion, 4 Conservation in phase space, 7 Phase-space diagrams for multidimensional systems, 11 The optical analogy, 14			
	1.2	Cons	tants of the Motion	15		
		1.2b 1.2c	Transformation theory of mechanics, 15 The integral invariants, 20 Action-angle variables, 24 Equivalence of classical mechanics and geometrical optics, 27			
	1.3	Phase	e-space conservation	29		
		1.3b	 Liouville's Theorem, 30 Reduction to six dimensions for noninteracting particles, 33 Reduction of Liouville's Theorem in the presence of interparticle forces, 35 			
	1.4	Theo	ry of Oscillations	39		
		1.4a 1.4b	Conservative autonomous systems, 40 A linear nonautonomous system, 41 Linear differential equations with periodic coeffi- cients, 42			

ix

x (Contents		Contents
	1.4d Perturbation solutions to nonlinear autonomous equa- tions, 45		3.3c Imaging and beam profiles for linear transverse lenses, 116
	 1.4e Asymptotic expansions, 47 1.4f Method of averaging, 49 		 3.3d Stability, phase space, and beam envelope of a periodically focused beam, 121 3.3e Nonlinear lenses—an optical analogy, 124
2.	ADIABATIC INVARIANTS	53	3.4 Longitudinal Phase-space Transformations: Nonlinear Ef-
	2.1 Adiabatic Invariance	53	fects
	2.1a Introduction, 532.1b Adiabatic invariance of the action integral, 54		 3.4a Outline of the problem, 126 3.4b Phase bunching, 127 3.4a Energy bunching, 122
	2.2 The Change in the Action Integral for Nearly Adiabatic Sys-	57	3.4c Energy bunching, 1333.5 Phase-space Density Distributions within a Beam
	tems 2.2a Method of asymptotic expansions, 58 2.2b Method of direct computation, 66	57	3.5a Thermal velocity limit to current density, 1353.5b Transverse cross sections and the effect of space
	2.3 On the Minimization of the Increase in Effective Phase Space	70	charge, 141
	 2.4 Adiabatic Invariants in Systems with More Than One Degree of Freedom 2.4a The use of adiabatic invariants, 73 	73	 3.6 Coupling of Degrees of Freedom 3.6a Types of coupling, 144 3.6b Phase-space analysis of a particle velocity separator, 147
	2.4b The asymptotic formulation, 752.4c Adiabatic separation of the variables, 78		3.6c An example of the use of phase-space concepts in optics- design of a spectrometer, 152
	2.4d An example of the asymptotic method: the harmonic oscillator, 80		4. PARTICLE DYNAMICS IN ACCELERATORS
	2.4e Amplitude functions and exact invariants, 83		4.1 Betatron Oscillations
	2.4f Necessity of considering higher-order terms, and break- down of adiabatic theory, 85		 4.1a General description of oscillations in accelerators, 158 4.1b Free oscillations in axially symmetric circular accelerators, 160
3.	PHASE-SPACE TRANSFORMATIONS	92	4.1c Free oscillations in alternating gradient synchro-
	3.1 Basic Concepts	92	trons, 165 4.1d Betatron oscillations with a driving term, 168
	 3.1a Discontinuous change in parameters, 92 3.1b Phase-space density distributions, 97 		4.2 Synchronous and Coupled Oscillations; Effects of Radiation and Space Charge
	3.2 Linear Transformations	99	4.2a Synchronous oscillations in linear accelerators, 174
	3.2a Some consequences of linearity, 993.2b The method of ellipses, 103		4.2b Synchronous oscillations in synchrotrons, 179
	 3.2c Particle oscillations in a piecewise constant system, 106 3.2d Phase-space matching, 109 		 4.2c Coupled oscillations, 184 4.2d Damping of oscillation amplitudes by radiation loss, 185 4.2e Hamiltonian formalism including space charge, 191
	3.3 Transverse Phase-space Transformations of Beams	111	4.3 Transverse Matching in Accelerators
	3.3a Choice of variables, 1123.3b Linear lenses, 113		4.3a Synchrotron acceptance, 1934.3b Transverse focusing in linear accelerators, 196

Contents xi

126

134

144

158 158

173

193

ii	Cont	tents			Content	s x
4	4.4	 Longitudinal Matching 4.4a Introduction, 199 4.4b Analysis of a linear accelerator bunching section, 200 	199	5.4b	a Heating Introduction, 283 Adiabatic compression, 284 Cyclotron resonance heating in a uniform magnetic	28
2	4.5	 The Use of Density Distributions in Maximizing the Transfer of Particles 4.5a Introduction, 207 4.5b Analytic treatment of two limiting cases, 209 4.5c Numerical determination of the optimum voltage, 212 	207	5.4d (5.4e]	 field, 285 Cyclotron resonance interaction in mirror geometries: results of Hamiltonian perturbation theory, 287 Numerical computation of cyclotron interaction in mirror geometries: limits of adiabatic behavior, 290 Stochastic cyclotron resonance heating, 296 	
	4.6	 Multiturn Injection into Magnet Rings 4.6a General considerations, 215 4.6b Phase-space packing in azimuthally symmetric accelators, 217 4.6c Multiturn injection into an AG magnet ring, 219 4.6d Multiturn injection employing radiation damping, 222 4.6e Beam stacking in FFAG accelerators, 223 	215	5.5 Particle 5.5a (5.5b I	e Injection into Containment Fields General considerations, 300 Injection by means of nonadiabatic fields, 303 Trapping times from phase-space arguments, 307	30 31
			228	List of Symbols	S	31
		Basic Considerations25.1aAdiabatic invariants of the motion, 2285.1bThe guiding center motion, 2335.1cEquivalence of gyromotion with harmonic oscillator, 2365.1dHigher-order invariance, 2385.1eSome general remarks on nonadiabatic behavior, 2405.1fNonadiabatic variation of the field, 2415.1gDynamics of a Vlasov plasma, 244	228	Index		32
5		Containment I: The Dipole Field25.2aFormulation of the problem, 2495.2bMethod of action integrals, 2515.2cGeneralized coordinates and equilibria, 257	248			
5		 Containment II: Laboratory Plasmas 2 5.3a Introduction, 260 5.3b Symmetric poloidal fields, 264 5.3c Approximate solution for the motion of a particle in a mirror machine, 268 5.3d Motion in confining fields without azimuthal symmetry, 275 5.3e Numerical computations of the limits of adiabatic behavior, 279 	260			