CONTENTS

GENERATION OF NONINDUCTIVE CURRENT IN A TOKAMAK

Ya. I. Kolesnichenko, V. V. Parail, and G. V. Pereverzev

Intr	oduct	ion			
1.	Qual	litative Analysis of Noninductive Methods			
	of G	enerating a Stationary Current in a Tokamak			
	1.1.	Main Mechanisms of Current Generation			
	1.2.	Methods Based on Introducing a Longitudinal			
		Pulse into a Plasma	1		
	1.3.	Methods Not Involving an External Pulse	2		
2.	Maintenance of a Stationary Current in a Tokomak				
	2.1.	Tokamak Reactor with Self-Maintaining Current			
		(Boot Strap Tokamak)	3		
	2.2.	Maintaining a Current in a Tokamak			
		by Neutral-Atom Injection	4		
	2.3.	HF-Dragging Currents in a Plasma	6		
	2.4.	Plasma Production by Cyclotron Waves	9		
3.	Dynamics of Current Production in a Tokamak				
	3.1.	Kinetics of Current Generation in a Plasma			
		with an Electric Field	11		
	3.2.	Dynamics of Total Current in a Tokamak	12		
	3.3.	Distribution of Noninductive Current			
		in a Tokamak	15		
	3.4.	Dynamics of Current Density in a Tokamak	16		
4.	Con	clusion	17		
Ref	erenc	es	18		

vi Contents

RESONANCE EFFECTS IN OSCILLATIONS OF UNEVEN FLOWS OF CONTINUOUS MEDIA

A. V. Timofeev

		on	193				
1.	Oscil	lations of Plane-Parallel Liquid Flows	196				
	1.1.	Rayleigh's Theorem	196				
	1.2.	Allowance for Viscosity. Landau's Circuiting					
		Theorem	199				
	1.3.	Rayleigh's Equation as a Schrödinger Equation					
		with a Singular Potential	205				
	1.4.	Analog of Rayleigh's Theorem for Singular					
		Equations with Pole of Arbitrary Order	211				
	1.5.	Rayleigh Instability	213				
	1.6.	Analysis of Resonant Interaction in Flows					
		of an Ideal Liquid	216				
	1.7.	Influence of Viscosity on Flow Stability	226				
	1.8.	Instability of Flows as a Result of the					
		Action of a Reynolds Stress	235				
	1.9.	Evolution of Initial Perturbation in Liquid Flows	237				
		Resonant Buildup of Gravitation Waves	244				
	1.11.	Resonant Interaction in Flows of a					
		Compressible Liquid	249				
2.	Flute	Oscillations of a Charged-Particle Gas and of an					
	Inho	mogeneously Rotating Plasma in a Magnetic Field .	255				
	2.1.	Charged-Particle Gas in a Magnetic Field	255				
	2.2.	Rarefied Uncompensated Plasma	265				
	2.3.	Dense Rotating Plasma	271				
3.	Oscil	Oscillations of Inhomogeneous Electron Streams in a					
		itudinal Magnetic Field	279				
		Flow with Linear Velocity Profile	279				
	3.2.	Adjacent Flows	284				
4.		én Oscillations of an Inhomogeneous Plasma	286				
App	endic	es	293				
		Rayleigh's Theorem and Damped Oscillations	293				
	A.2.	Fourth-Order Equations with Small Parameter					
		of the Highest Derivative	294				
Ref	erence	es	298				