CONTENTS

THE KINETIC THEORY OF CONVECTIVE TRANSPORT OF FAST PARTICLES IN TOKAMAKS

A. V. Gurevich and Ya. S. Dimant

Introduction						
1. General Qualitative Discussion	2					
1.1. Magnetic Field Ripple	2					
1.2. Locally Trapped Particles	5					
	7					
1.4. Kinetic Convection	9					
1.5. Distortions in the Distribution Functions	0					
1.6. Adiabatic Trapping	2					
1.7. The Purpose of This Study	6					
2. Basic Equations	8					
2.1. The Initial Kinetic Equation. The Collision Operator 1	8					
2.2. The Drift-Kinetic Equation	2					
2.3. Curvilinear Coordinate System	7					
2.4. Averaging over the Longitudinal Motion (Trapped						
Particles)	9					
2.5. The Smoothed Distribution Function of						
Banana Particles	33					
2.6. Passing Particles	\$4					
2.7. Discussion of the Simplified Equations for						
Banana and Passing Particles	66					
2.8. Locally Trapped Particles	88					

v i

Contents

Contents

2.9.	The KCT Equations		45
2.10.	Thin Tokamak without a Radial Electric Field		48
2.11.	Tokamak with Vertically Uniform Ripple		51
2.12.	Conditions for Applicability of the KCT Equations.	•	53
3. Kinetic	Convective Transport	•	56
3.1.	Distribution of Magnetic Field Ripple in Tokamaks.	•	56
3.2.	The Low-Energy Diffusion Limit	•	59
3.3.	Convective Transport of Fast Ions	•	62
3.4.	Transport of Fast Electrons	•	69
3.5.	Adiabatic Capture and Loss of Particles	•	81
3.6.	Convective Transport of Particles and Energy		
	in Tokamaks		86
Appendices .			95
A1.	Conservative Transformations		95
A2.	Averaging over a Periodic Variable		97
A3.	Averaging over the Axial Angle in Velocity Space		
	[Derivation of the Drift Kinetic Equation (2.29)].		103
A4.	Averaging over the Longitudinal Particle Motion	•	106
A5.	Averaging over the Coordinate ζ		110
References .		•	113

DIFFUSIVE TRANSPORT PROCESSES CAUSED BY RIPPLE IN TOKAMAKS

P. N. Yushmanov

Introduction	 •	117
1. Particle Trajectories in Tokamak Magnetic Fields		
with Ripple	 	119
1.1. Toroidal Magnetic Field Ripple in Tokamaks.	 	119
1.2. Particle Trajectories in a Ripple Magnetic Field .		128
1.3. Collisionless Transitions between Banana and		
Locally Trapped Particles	 	139
2. Transport Owing to Locally Trapped Particles	 	145
2.1. Basic Transport Characteristics of Locally		
Trapped Particles		145
2.2. Fluxes of Locally Trapped Particles at High		
Collision Frequencies		153

2.3. Fluxes of Locally Trapped Particles at Low	
Collision Frequencies	
2.4. Ion Thermal Transport in the Transition Regime 165	
3. Ripple Fluxes of Banana Particles	
3.1. Qualitative Analysis of Transport Processes 172	
3.2. Transport Processes in the Banana-Drift Regime 182	
3.3. Generalization of the Banana-Drift Kinetic Equation	
3.4. Radial Fluxes Produced by Banana Particles	
4. Ripple Losses of High-Energy Particles	
4.1. Estimate of the Losses of Highly Energetic Particles	
Using the Kinetic Equation	
4.2. Monte Carlo Calculations of Ripple Losses	
of α -Particles	
4.3. Cyclotron Interaction of High-Energy Particles	
with a Toroidal Field Ripple	
Appendices	
A1. Magnetic Field Ripple in Tokamaks with Circular Coils . 220	
A2. Correction to the Ripple Transport of Locally Trapped	
Particles Including the Boundary Layer	
A3. Transport Coefficients with Arbitrary Trapping	
Probabilities for the Banana Particles	
A4. Resonance Transport of Banana Particles	
A5. Radial Fluxes for Arbitrarily Shaped	
Magnetic Surfaces	
References	

ELECTRON MAGNETOHYDRODYNAMICS

A. S. Kingsep, K. V. Chukbar, and V. V. Yan'kov

1.	General Concepts		•			243
2.	Convective Skin Phenomena in Plasmas .					247
	2.1. Nonlinear Skin Effect					247
	2.2. The Skin Effect in the Presence					
	of Charged-Particle Beams				•	251
3.	Stable Two-Dimensional Electron Vortices					255
	3.1. Vortices as Fundamental Objects .	•				255
	3.2. Vortices in Uniform Plasmas					256

vii

Contents

3.3. A New "Universal" Two-Dimensional Equation								
		in a Weakly Inhomogeneous Medium					258	
,	3.4.	Stable Vortices and Solitons in Nonuniform F	lasn	nas	•		261	
	3.5.	Pseudo-Two-Dimensional Vortices		•	•	•	263	
4. '	Turbı	lence and EMH Resistance		•	•		266	
4	4.1.	Stable Three-Dimensional Vortices and						
		Three-Dimensional Turbulence		•	•		266	
	4.2.	EMH Resistance	•		•		268	
5. '	The Z	Z-Pinch		•			273	
	5.1.	EMH Effects in the Z-Pinch		•			273	
	5.2.	Electron Flows in Low-Density Pinches				•	275	
	5.3.	The Resistive Pinch					278	
6.	Gene	ration of Magnetic Fields		•	•	•	279	
7.	EMH	Effects in Experiments			•		284	
Concl	lusior		•				288	
Refere	ences			•	•		288	

viii