CONTENTS

NONLINEAR DYNAMICS OF RAREFIED PLASMAS AND IONOSPHERIC AERODYNAMICS

A. V. Gurevich and L. P. Pitaevskii

1.	Introduction	1
2.	Quasineutral Plasma Flows	6
	2.1. Self-Similar Motion	6
	2.2. One-Dimensional Flows. Appearance of	
	Singularities	27
	2.3. Adiabatic Trapping of Electrons	37
	2.4. Ion Acceleration	45
3.	Appearance and Evolution of the Oscillatory	
	Plasma State	59
	3.1. Small Perturbation of the Quasineutral Flow	59
	3.2. Hydrodynamic Breaking Shock Wave in	
	Nondissipative Hydrodynamics	63
	3.3. Kinetic Breaking	83
	3.4. Large Discontinuity at the Front of a	
	Rarefaction Wave	87
4.	Ionospheric Aerodynamics	- 98
	4.1. Simplification of Equations and the Law	
	of Similarity	98
	4.2. The Flow around a Half-Plane	103
	4.3. The Flow around a Rounded Edge of a Body.	105
	4.4. Flow around a Disk	107
	4.5. The Flow around a Body of an Arbitrary	
	Shape	112
5.	Plasma in Magnetic Field	114
	5.1. The Main Equations	114
	5.2. Self-Similar Flow	118
	5.3. Plasma Flow into Vacuum. Small	
	Discontinuity	121
	5.4. Nonisothermal Plasma	125
6.	Inductive Interaction	130

7	71

CONTENTS

6.1. The Surface Current and Polarization of the Surface of a Conducting Body.		DYNAMIC NONLINEAR ELECTROMAGNETIC	
	132	PHENOMENA IN PLASMAS	
The Double Layer	132	A. G. Litvak	
6.2. Plasma Flow around a Conducting Plate.	196	III GI MIVAN	
General Relations	136	1. Mechanisms of Nonlinear Processes.	
6.3. High-Velocity Body in Plasma	138		004
6.4. Plasma Flow around a Low-Velocity Body	145	Fundamental Equations	294
6.5. The Forces Acting on a Body and	140	Rapidly Varying Fields	295
Dissipation of Energy	148	1.2. Quasihydrodynamics of Plasmas in High-	200
References	149	Frequency Fields	298
		1.3. Equations for the Electromagnetic Field	302
ONGLOSDON INCOADILISM OF SHE BADSH		2. Self-Interaction of Electromagnetic Plane Waves	304
CYCLOTRON INSTABILITY OF THE EARTH		2.1. Reflection and Penetration of an	.001
RADIATION BELTS		- • - •	304
P. A. Bespalov and V. Yu. Trakhtengerts		Electromagnetic Plane Wave	304
1. II. Despuist and v. Iu. Ilamitongoris		2.2. Resonance Absorption of Large-Amplitude	
Introduction	155	Electromagnetic Waves in a Nonuniform	0
1. Physical Conditions in the Geomagnetic Trap	158	Plasma	310
	162	2.3. Self-Sustained Waveguide Ducts	321
2. Linear Theory of the Cyclotron Instability	102	2.4. Envelope Solitons	329
3. Quasilinear Description of the Cyclotron	4.574	3. Quasioptical Effects of Self-Interaction of	
Instability	174	Electromagnetic Waves	339
4. Particle Diffusion over Pitch Angles	181	3.1. Stationary Self-Focusing of Wave Beams	
5. Stationary States of the Earth RB	191	in Isotropic Plasma	341
6. RB Formation with Transfer of Particles from		3.2. Self-Interaction of Wave Beams in a Plasma	
the Periphery of the Magnetosphere	201	in a Constant Magnetic Field	349
7. Temporal CI Evolution	213	3.3. Space—Time Instability of a Plane Wave	356
8. Pulsations of Magnetic Field Tubes with		4. Dynamic Regimes of Parametric Instabilities of	
Generation of CI Relaxation Oscillations	225	Plasma Oscillations	361
9. Self-Excitation of Periodic CI Regimes	237	4.1. Basic Equations. Hydrodynamic Instabilities	001
10. Dynamics of the Wave Spectrum in the Alfvén		of Plasma Oscillations in High-Frequency	
Maser	246	Fields	362
11. Alfvén Sweep Maser	253	4.2. Multiwave Decay Processes	369
12. Generation of the Main Types of the Low-			373
Frequency Electromagnetic Radiation in the		4.3. Induced Scattering by Ions	
Magnetosphere	259	4.4. Modified Decay Instability.	376
13. Conclusions	270	4.5. Dynamics of the Modulational Instability	381
Appendix A. Averaging over the Bounce-	2.0	4.6. Collapse of Non-One-Dimensional Cavitons	393
Oscillation Period	272	4.7. Brightening of a Plasma under Modulational	
	414	Instability	407
Appendix B. Relaxation Oscillations for an	074	References	412
Arbitrary Source	274		
Appendix C. Oscillatory CI Regimes for a Finite	050		
Frequency Band	279	DYNAMICS OF THE Z PINCH	
Appendix D. The Effects of the Azimuthal	202	W Wilhow and C I Draginal-ii	
Particle Drift on the Periodic CI Regimes	282	V. V. Vikhrev and S. I. Braginskii	
References	284	Introduction	425

CONTENTS

vii

viii CONTENTS

1.		nation of a Current Sheath in a High-Power	40.
		ed Discharge	434
		Skin Effect in an Ionizable Gas	435
	1.2.	Physical Processes Involved in the	
		Formation of the Current Sheath	440
		Formation of the Current Sheath	445
	1.4.	Stability of the Current Sheath during Its	
		Formation	449
	1.5.	Formation of a Filamentous Structure of	
		the Current Sheath	452
2.	Evol	ution of the Plasma Sheath in the Z Pinch	458
	2.1.	Physical Processes in the Motion of	
		the Sheath	458
	2.2.	Three-Fluid MHD Model of the Plasma	
		Sheath of the Z Pinch	463
	2.3.	Numerical Simulation of the Sheath Motion	467
	2.4.	Self-Similar Solution for the Current	
		Sheath Structure	472
3.	Motio	on of the Plasma Sheath	474
		One-Dimensional Snowplough Model	476
	3.2.		
		in a Noncylindrical Z Pinch	480
	3.3.		
		Discharge Circuit	482
	3.4.	Influence of the Hall Effect on the Sheath	101
	0.1.	Motion	484
4.	The	Plasma Focus	489
••		MHD Model of the Plasma Focus Taking into	100
	1.1.	Account the Anomalous Resistance of the	
		Plasma	490
	4 2	MHD Instability of the Plasma Focus	498
		Simple Model of the Plasma Focus	504
Co		sion	511
		ices	512
иG	reren	ices	OIA