CONTENTS

Field	State Plasma Flow in a Magnetic
A. I. M	orozov and L. S. Solov'ev
Introductio	on
Chapter 1.	Acceleration Mechanisms
§1.	Microscopic Picture of Plasma
÷	Acceleration
§2.	Conditions for the Existence of an Electric
	Field in a Plasma
§3.	Basic Equations; the Replacement
	Factor ξ
§ 4.	Perturbations of the Plasma Stream
Chapter 2.	Axisymmetric Flow of an Ideal Plasma
	in a Magnetic Field with $\xi = 0$
§1.	Conservation Laws and Equations for
	the Stream Functions
§ 2.	Axisymmetric Flow across an Azimuthal
	Magnetic Field
§ 3.	Plasma Flow in a Narrow Flux Tube
6 4	$(H_{ } = 0)$
§ 4.	Integrable Flows Which Vary Slowly
§5.	along the z Axis.
89.	Flow Velocity Equal to Signal Velocity
§6.	at Some Point Current Eddies and Critical Surfaces
30.	ourrent Buttes and Ornital Burraces.

Chapter 3.	Flow in Axisymmetric Channel	
	with a Longitudinal Magnetic Field	54
§1.	Integrated Characteristics	54
§ 2.	Flow in Narrow Axisymmetric Channel	56
\$ 3.	Flow of Cold Plasma in Channel of Slowly	
	Varying Cross Section	68
Chapter 4.	Axisymmetric Hall Flow of an Ideal	
	Plasma	70
§1.	Conservation Laws and Integral	
	Parameters	70
§ 2.	Qualitative Analysis of Equations (4.18)	
	and (4.19)	74
§ 3.	Flow of a Two-Component Plasma	
	in Narrow Tube with $H_{\parallel} = 0$	81
§ 4.	Flow in Smooth Channel with $H_{\parallel} = 0$	84
	Two-Parameter Steady-State Hydro-	
-	tic Flow of Ideally Conducting Medium	
	trary Curvilinear Coordinate System	85
	, Steady-State Symmetric Flow in	
Two-F	luid Magnetohydrodynamics	94
§1.	Flow of the Electron and Ion Fluids	94
§2.	Symmetric Flows of Two-Fluid Magneto-	
	hydrodynamics with Slow Variation	
	along One of the Coordinates	100
References	•••••••••••••••••••••••••••••••••••••••	102
Calculat	ion of Two-Dimensional Plasma	
	s in Channels	
	Brushlinskii and A. I. Morozov	
11.0 0.0	Drubininskir and H. I. Morozov	
Introduction	n	105
Chapter 1.		100
	of Analysis	108
§1.1.	Physical Formulation of the Problem	108
\$1.2.	Mathematical Models	108
§1.3.	Method for Numerical Solution	144
	of the Problem	137
		101

CONTENTS

viii

Chapter 2.	Flow of Fully Ionized Plasma	145
\$2.1.	Establishment of Steady-State;	
	Stability of the Flow	145
\$2.2.	Quasi-One-Dimensional Flow	148
\$ 2 . 3 .	Two-Dimensional Flow of Ideal Plasma	152
§2.4.	Influence of a Finite Conductivity	
	on the Flow	157
§ 2.5.	Hall Effect	161
\$2.6 .	Compressional Plasma Flows	172
Chapter 3.	Flow of a Gas Which Is Ionized in the	
Chapter 3.	Flow of a Gas Which Is Ionized in the Channel	182
Chapter 3. §3.1.		$\frac{182}{182}$
	Channel	
§ 3.1.	Channel Ionization Process in the Flow Model	
§ 3.1.	Channel Ionization Process in the Flow Model Steady–State Flow with a Conductivity	
§ 3.1.	Channel Ionization Process in the Flow Model Steady-State Flow with a Conductivity Discontinuity in a Channel	182
\$3.1. \$3.2.	Channel Ionization Process in the Flow Model Steady-State Flow with a Conductivity Discontinuity in a Channel of Constant Cross Section	182
\$3.1. \$3.2.	Channel Ionization Process in the Flow Model Steady-State Flow with a Conductivity Discontinuity in a Channel of Constant Cross Section Calculations for the Flow of an Ionizing Gas	182 184

CONTENTS

Mode of a	nensional Magnetohydrodynamic 1 for the Dense Plasma Focus Z Pinch D'yachenko and V. S. Imshennik	
Introduction	n	199
Chapter 1.	MHD Analysis of a Noncylindrical Z	
	Pinch	202
§1.	Description of Dissipative Processes	202
\$ 2.	Two-Dimensional Magnetohydrodynamic	
	Equations (MHD Model)	209
§3.	Energy Conservation Law and Kirchhoff	
	Equation	215
§ 4.	Initial Conditions and Boundary Conditions	
	for the MHD Problem	223
§5.	Dimensionless Form of the Equations;	
	Complete Formulation of the MHD	
	Problem	228

ix

CONTENTS

2

Chapter 2.	Numerical Solution of the Two-Dimensional	
	MHD Problem	233
§6.	General Comments	233
§7.	The Free-Point Method	236
§ 8.	The Selection of Points	239
§ 9.	Method for Finding the Difference	
	Equations	244
§10.	Calculation Equations	248
§11.	Difference Formulation of the Boundary	
	Conditions	258
§12.	Formulation of the Calculation Problem	261
Chapter 3.	MHD Analysis of the Z Pinch	263
610		
§ 13.	A Few Comments	263
§13. §14.	Collapse of the Shock Wave and the Current	263
0.4.3.6		263 265
0.4.3.6	Collapse of the Shock Wave and the Current	
§14.	Collapse of the Shock Wave and the Current Sheet to the Axis of the System	265
§14. §15.	Collapse of the Shock Wave and the Current Sheet to the Axis of the System First Plasma Compression	265 268
\$14. \$15. \$16.	Collapse of the Shock Wave and the Current Sheet to the Axis of the System	265 268
\$14. \$15. \$16.	Collapse of the Shock Wave and the Current Sheet to the Axis of the System First Plasma Compression Second Plasma Compression Instability of the Plasma Interface	265 268 273
\$14. \$15. \$16. \$17.	Collapse of the Shock Wave and the Current Sheet to the Axis of the System First Plasma Compression Second Plasma Compression Instability of the Plasma Interface with the Magnetic Field	265 268 273
\$14. \$15. \$16. \$17. \$18.	Collapse of the Shock Wave and the Current Sheet to the Axis of the System First Plasma Compression Second Plasma Compression Instability of the Plasma Interface with the Magnetic Field Energy Balance and Neutron Yield	265 268 273 280

Plasma Optics

X

A. I. Morozov and S. V. Lebedev

Chapter 1.	Introduction	301
§1.	Basic Concepts of Plasma Optics	301
§ 2.	Electric Field in the Plasma for $T_e = 0 \dots$	308
§ 3.	Analysis of Plasma-Optical Systems	322
Chapter 2.	Analysis of a Paraxial Beam	
	in the Single-Particle Approximation	325
§1.	Specification of the Magnetic Fields	325
§ 2.	Paraxial Approximation	330
§ 3.	Incorporation of Aberrations in	
	the Grinberg Scheme	342

§ 4.	Harmonic Systems with Equipotential Prin-	
§5.	cipal Trajectory The "Weak-Field Approximation"	345
89.	for Lenses	353
§ 6.	Variational Formulation of Particle-	
	Optical Problems	362
Chapter 3.	Plasma Lenses	367
§1.	Axial Plasma Lens	367
\$ 2.	Annular Magnetic Lens	373
\$ 3.	Electrostatic Plasma Lens	377
§ 4.	First-Order Aberrations of an Annular	
	Plasma Lens	382
§ 5.	Multiple-Lens, Multiply Connected	
	Charged-Particle Accelerators	386
§6.	Toroidal Multiply Connected, Multiple-Lens	
	Accelerator	394
Chapter 4.	Plasma-Optical Systems with Two-	
	Parameter Focusing	400
§1.	Systems with Stabilized Focus	400
§ 2.	Focusing in Terms of the Radial and	
	Azimuthal Velocities (Whirler System)	404
§ 3.	Energy Recovery	410
Chapter 5.	Equilibrium Neutralized Ion Beams	414
§1.	Thermalized Potential	414
§2.	Distributions of the Thermalized Potential and the Electron Temperature in	
	a Steady–State Plasma System	418
§ 3.	Ion Dynamics	427
\$4.	Electron Sheath of a Neutralized Ion Beam	
0.2.0	Detached from the Walls	439
§ 5.	Grazing a Neutralized Ion Beam in an	100
	Axial Lens	448
§6.	Magnetic Fields Produced by the	
2 ~•	Currents Flowing in a Multiply	
	Connected, Multiple-Lens Accelerator	456
References	• • • • • • • • • • • • • • • • • • • •	458

CONTENTS

xi