CONTENTS

МО		ON OF CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS			
		N THE DRIFT APPROXIMATION			
1	by I	D. V. Sivukhin	1		
Ş	1.	Motion of a Charged Particle in a Constant Uniform			
		Magnetic Field	1		
Ş		Motion of the Guiding Center	6		
		Origin of the Drifts	23		
Ş		Smoothing and Averaging of Quantities Containing Rapidly			
		/arying Terms	33		
ş		Complete System of Equations of Motion in the Drift			
		Approximation	37		
Ś		More Exact System of Equations of Motion in the Drift			
		Approximation	42		
Ś		Derivation of Certain Auxiliary Relations	47		
Ş		Derivation of a Compatible System of Equations of Motion			
2		n the Drift Approximation	63		
\$		Another Approach to the Equation of Motion of the Guiding	68		
8.			68 70		
\$10. Examples			70		
¥.		Drift Integrals of the Motion in Constant Electric and Magnetic Fields	91		
8		Liouville Theorem in the Drift Approximation	96		
		Extension of Drift Theory to the Case of Strong Transverse	00		
3 .		Electric Fields	100		
De			100		
References					
PARTICLE INTERACTIONS IN A FULLY IONIZED PLASMA					
]	by E	3. A. Trubnikov	105		
		I. Test Particles in a Plasma			
Ş	1.	Force of Friction Due to Scattering in a Coulomb Field	105		
ş		Coulomb Logarithm and the Role of Remote Interactions	108		
Ş	3.		111		
Ş	4.	Test Particles in a Plasma	115		
Ş		Rate of Change of the Moments	118		
Ş	6.	Characteristic Features of the Coulomb Interaction. The			
	F	Potential Functions ψ and φ	122		

CONT ENT S

ş	7.	Use of the Scattering Cross Sections	126
		II. Kinetic Equation for Coulomb Particles	
ş	8.	Motion of Particles in Phase Space	137
		Expression for the Flux	140
		Force of Dynamical Friction and the Diffusion Tensor	143
§ :	11.	Kinetic Equation for the Coulomb Interaction	148
Ş :		Kinetic Equation Taking Account of Polarization	
	C	of the Medium	152
	11	I. Kinetic Effects in High-Temperature Plasmas	
§ :	13.	Test Particle in a Medium of Infinitely Heavy Field Particles	
		nt Rest	167
\$:		Solution of the Kinetic Equation for the Preceding Case:	
		'Basic" Relaxation Time	172
	15.	1 , , ,	174
		Runaway Electrons	180 183
		Plane Flux in an Equilibrium Plasma	188
		Energy Transfer	192
		Approach to Equilibrium in a Two-Component Plasma	197
		ences.	204
-		DODE DDO CROSDO IN A DI AONA	
		PORT PROCESSES IN A PLASMA S. I. Braginskii	205
ſ		-	
Ş	1.	Transport Equations	205
Ş	2.	Transport Equations for a Simple Plasma (Summary of Results).	213
Ş		Kinetics of a Simple Plasma (Qualitative Description)	219
ê s		Kinetics of a Simple Plasma (Quantitative Analysis)	236
ş ş	5. 6	Certain Paradoxes	$\begin{array}{c} 255\\ 262 \end{array}$
ş		Multicomponent Plasma	276
ş		Examples	291
-		ndix	310
		ences	311
тн	ERM	IODYNAMICS OF A PLASMA	
1	by A	A. A. Vedenov	312
Ş		Classical Coulomb System	312
§	2.	Quantum Coulomb System	321
§		Degree of Ionization of a Plasma	325