Contents

Preface		vii
Chapter 1	Introduction to scattering theory	1
-	1.1 The crossed beam experiment	1
	1.2 Waves and particles	3
	1.3 Trajectories, wave packets and stationary states	6
	1.4 Semi-classical theory	11
	1.5 Laboratory and centre-of-mass coordinates	13
	1.6 Summary of systems to be examined	16
Chapter 2	Elastic scattering	19
	2.1 Classical trajectories for the central force problem	19
	2.2 Collision cross-sections	26
	2.3 Quantum scattering by a central force	31
	2.4 A semi-classical view of elastic scattering	41
	2.5 Comparison of classical, semi-classical and quantum	
	cross-sections	45
	2.6 The inversion problem	48
Chapter 3	Inelastic collisions	50
	3.1 Introduction	50
	3.2 The classical treatment of atom-diatomic molecule	
	collinear collisions	51
	3.3 Numerical integration of trajectories, and action-angle	
	variables	54
	3.4 The multichannel equations	60
	3.5 Quantum mechanical treatment of collinear atom-	
	diatomic molecule collisions	64
	3.6 The semi-classical approach to inelastic collisions	69
	3.7 Approximate solutions of the coupled-channel	
	equations	72

Chapter 4	Rotationally inelastic collisions	79
	4.1 Classical rotational energy transfer	79
	4.2 Classical rotational cross-sections	83
	4.3 The scattering matrix	89
	4.4 Quantum theory of rotational inelastic scattering	93
	4.5 Approximate schemes for rotational inelasticity	100
Chapter 5	Reactive scattering	108
	5.1 Coordinates for reactive collisions	108
	5.2 Classical trajectories for reactions	115
	5.3 Potential energy functions and reaction	
	cross-sections	122
	5.4 Quantum theory of reactive scattering	131
	5.5 Statistical theories	138
Chapter 6	Electronic transitions	142
	6.1 Beyond the Born-Oppenheimer approximation	142
	6.2 Atom-atom collisions	147
	6.3 Classical trajectory methods	158
Chapter 7	Scattering from surfaces	165
	7.1 Introduction	165
	7.2 Atom-rigid surface scattering	166
	7.3 More complicated problems	172
Appendix 1	The JWKB approximation	176
Appendix 2	Partial wave decomposition of the scattering amplitude	179
Appendix 3	The use of Jost functions to calculate the S matrix for inelastic scattering	
Appendix 4	Numerical methods	
Appendix 5	Effective impact parameter for a three-dimensional surface	186
Appendix 6	Hamilton's equations for $\mathbf{A} + \mathbf{BC}$ classical trajectory calculations	188
Bibliography		191
Subject index		195