

Theory of Polyelectrolyte Solutions		
By Jean-Louis Barrat and Jean-François Joanny		
STAR POLYMERS: EXPERIMENT, THEORY, AND SIMULATION	67	
By Gary S. Grest, Lewis J. Fetters, John S. Huang, and Dieter Richter		
Tethered Polymer Layers	165	
By I. Szleifer and M. A. Carignano		
LIVING POLYMERS	261	
By Sandra C. Greer		
Transport and Kinetics in Electroactive Polymers	297	
By Michael E. G. Lyons		
Polymers in Disordered Media	625	
By A. Baumgärtner and M. Muthukumar		
Author Index	709	
Subject Index	729	

THEORY OF POLYELECTROLYTE SOLUTIONS

JEAN-LOUIS BARRAT

Département de Physique des Matériaux (URA CNRS 172) Université Claude Bernard Lyon I Villeurbanne, France

JEAN-FRANÇOIS JOANNY

Institut Charles Sadron (UPR CNRS 022) Strasbourg, France

- I. Introduction
- II. Charged Chains at Infinite Dilution: Asymptotic Properties
 - A. Definition of Model and Flory-like Calculation
 - B. Variational Approaches
 - C. Renormalization Group Calculations
 - D. Screening of Electrostatic Interactions
 - E. Annealed and Quenched Polyelectrolytes
- III. Local Aspects of Screening
 - A. Counterion Condensation
 - B. Poisson-Boltzmann Approach
 - C. Attractive Electrostatic Interactions
- IV. Electrostatic Rigidity
 - A. Odijk-Skolnick-Fixman Theory
 - B. Alternative Calculations for Flexible Chains
 - C. Case of Poor Solvents
- IV. Charged Gels and Brushes
 - A. Grafted Polyelectrolyte Layers
 - B. Polyelectrolyte Gels
- VI. Semidilute Solutions
 - A. Ordering Transitions in Polyelectrolyte Solutions
 - B. Correlation Length and Osmotic Pressure of Semidilute Polyelectrolyte Solutions
 - C. Electrostatic Rigidity in Semidilute Solutions
 - D. Concentrated Solutions of Flexible Polyelectrolytes
 - E. Mesophase Formation in Poor Solvents

Advances in Chemical Physics, Volume XCIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-14324-3 © 1996 John Wiley & Sons, Inc.

VII. Dynamic Properties

- A. Mobility and Electrophoretic Mobility of a Single Charged Chain
- B. Viscosity of Polyelectrolyte Solutions

VIII. Conclusions

Appendix A: Effective Interaction between Charged Monomers

Appendix B: Relaxation and Electrophoretic Effects

- B.1. Relaxation Field
- B.2. Electrophoretic Field

STAR POLYMERS: EXPERIMENT, THEORY, AND SIMULATION

GARY S. GREST, LEWIS J. FETTERS, AND JOHN S. HUANG

Corporate Research Science Laboratories, Exxon Research and Engineering Company. Annandale, New Jersey

DIETER RICHTER

Institut für Festkörperforschung, Jülich, Germany

CONTENTS

- I. Introduction
- II. Synthesis
 - A. Chlorosilanes
 - B. Divinylbenzene
- III. Length Scales of a Star
- IV. Scaling Theory
- V. Computer Simulations
 - A. Good Solvent
 - B. O and Poor Solvent
 - C. Relaxation of Star Polymers
- VI. Scattering Methods
 - A. Small-Angle Neutron Scattering
 - B. Qualitative Features of the Form Factor
 - C. Theoretical Models for Form Factor
 - D. Comparison to Simulations
- VII. Concentration Dependence
 - A. Theory
 - B. Experiment
- VIII. Internal Dynamics of Star Polymers
 - A. Neutron Spin Echo Method
 - B. Quasi-elastic Scattering for Polymer Solutions: Zimm Model
 - C. Collective and Single-Star Relaxation
 - D. Partial Dynamic Structure Factors and RPA Approach

Advances in Chemical Physics, Volume XCIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-14324-3 © 1996 John Wiley & Sons, Inc.

IX. Diffusion and Viscosity of Star Polymers

X. Applications

Appendix A: Derivation of $\langle R_G^2 \rangle$ and P(Q) for Gaussian Star

Appendix B

TETHERED POLYMER LAYERS

I. SZLEIFER AND M. A. CARIGNANO

Department of Chemistry Purdue University West Lafayette, Indiana

CONTENTS

- I. Introduction
- II. Theoretical Approaches
 - A. Volume-Filling Constraints or Incompressibility Assumption
 - B. Single-Chain Mean-Field Theory
 - 1. Minimization of Free Energy
 - 2. Expansion of Partition Function
 - 3. Thermodynamic Quantities
 - C. Self-Consistent Field Theory
 - D. Analytical Approaches
- III. Tethered Polymers in Good-Solvent Regime
 - A. Conformational Behavior of Linear Chains
 - B. Thermodynamic Properties
 - C. Adsorption from Solution
 - D. Changing Chain Architecture
- IV. Varying Solvent Quality
 - A. Conformational Properties
 - B. Phase Behavior
 - V. Tethered Polymers on Curved Surfaces
 - A. Conformational Properties
 - B. Thermodynamic Behavior
- VI. Elastic Properties of Diblock Copolymer Films at Liquid-Liquid Interfaces
- VII. SummaryAppendix

Appendix

Advances in Chemical Physics, Volume XCIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-14324-3 © 1996 John Wiley & Sons, Inc.

LIVING POLYMERS

SANDRA C. GREER

Department of Chemical Engineering, University of Maryland at College Park, Maryland

CONTENTS

- I. Introduction
 - A. General Reaction Mechanism
 - B. History
 - C. Issues
- II. Reaction Parameters
 - A. Thermodynamic Parameters
 - B. Solvent Effects
 - C. Initiator Effects
- III. Specific Example: α-Methylstyrene
 - A. Mechanisms
 - B. Polymerization Line and Thermodynamic Parameters
- IV. Thermodynamics
 - A. Statistical Mechanical Models
 - 1. Mean Field
 - 2. Non-Mean Field
 - B. Experimental Measurements
 - 1. Extent of Polymerization
 - 2. Mass Density
 - 3. Concentration Susceptibility
 - 4. Phase Diagram in Poor Solvent
- V. Structure: Correlation Length
- VI. Conclusions
 - A. Where Are We Now?
 - 1. Macroscopic Properties
 - 2. Microscopic Properties
 - B. What Are Some Interesting Questions?
 - 1. Macroscopic Properties
 - 2. Microscopic Properties

Acknowledgments

Advances in Chemical Physics, Volume XCIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-14324-3 © 1996 John Wiley & Sons, Inc.

TRANSPORT AND KINETICS IN ELECTROACTIVE POLYMERS

MICHAEL E. G. LYONS

Electroactive Polymer Research Group Physical Chemistry Laboratory University of Dublin, Trinity College Dublin, Ireland

- I. Introduction
 - A. Electroactive Polymer Materials
 - B. Outline of Present Review
- II. Charge Percolation in Electroactive Polymers: Basis Concepts
 - A. Redox Polymers and Loaded Ionomers
 - 1. Introduction
 - 2. Electron Hopping: Quasi-diffusional Model
 - 3. Intersite Electron Hopping: Percolation Models and Long-Range Electron Transfer Considerations
 - 4. Local Field Corrections: Diffusion-Migration Effects in Electron Hopping
 - B. Electronically Conducting Polymers
 - 1. Introduction
 - 2. Doping Processes in Electronically Conducting Polymers
 - 3. Charge Carriers and Conductivity in Electronically Conducting Polymers
 - 4. Polymer Molar Mass and Chain Orientation Effects on Conductivity Behavior of Electronically Conducting Polymers: Pearson Model
 - 5. Redox Switching in Conjugated Polymer Thin Films
- III. Conduction in Electroactive Polymers: Complicating Factors
 - A. Nonideality in Electroactive Polymer Films
 - 1. Introduction
 - 2. Brown-Anson Model
 - 3. Albery-Colby Model
 - 4. Chidsey-Murray Model for Redox Conduction
 - B. Solvent, Salt, and Ion Transport in Electroactive Polymer Films
 - 1. Introduction
 - 2. EQCM and PBDS Methods: Principles and Case studies
 - 3. Effect of Observational Time Scale and Film History on Switching Kinetics

Advances in Chemical Physics, Volume XCIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-14324-3 © 1996 John Wiley & Sons, Inc.

- IV. Electropolymerization Mechanisms: Nucleation and Growth of Electronically Conducting Polymer Films
 - A. Introduction
 - B. General Features of Electropolymerization Mechanism of Electronically Conductive Heterocyclic Polymers
 - C. Fundamentals of Nucleation and Layer Growth
 - 1. Introduction
 - 2. General Comments on Fundamental Thermodynamics and Kinetics of Nucleation
 - 3. Quantitative Analysis of Nucleation/Growth Processes
 - 4. Application to Electronically Conducting Polymers
- V. Complex Impedance Spectroscopy: Useful Technique for Quantifying Electronic and Ionic Conductivity in Electroactive Polymer Films
 - A. Introduction
 - B. Complex Impedance Response of Redox Polymer Films
 - C. Complex Impedance Response of Electronically Conducting Polymer Films
 - 1. Introduction
 - 2. Fletcher Dual-Rail Transmission Line Approach
- VI. Mediated Electrocatalysis Using Polymer-Modified Electrodes
 - A. Introduction and Overview
 - B. Heterogeneous Mediated Electrocatalysis: General Considerations
 - C. Theoretical Analysis of Mediated Electrocatalysis at Polymer Modified Electrodes.
 - 1. Introduction
 - 2. Albery-Hillman Model for Mediated Electrocatalysis
 - 3. Albery-Hillman Kinetic Case Diagram
 - 4. Experimental Determination of Diagnostic Parameters
 - 5. Optimizing Electrocatalysis
 - 6. Comparison with Experiment
- VII. Catalytic Systems Utilizing Electroactive Polymer Films that Exhibit Complex Michaelis-Menten Kinetic Behavior
 - A. Introduction
 - B. Lyons-Bartlett Model
 - C. Thin-Film Limit: Neglect of Concentration Polarization of Substrate in Layer
 - D. Low-Substrate-Concentration Limit
 - E. High-Substrate-Concentration Limit
 - F. General Situation
 - G. Kinetic Case Diagram
 - H. Comparison with Experiment
- VIII. Microheterogeneous Electrocatalytic Systems
 - A. Introduction
 - B. Model
 - C. Conducting Polymer-Microparticulate Metal Composite Systems
 - D. Ionomer-Mediator-Microparticle and Redox Polymer-Microparticle Composite Systems
 - E. Microheterogeneous Systems: Development of Optimal Strategy for Electrocatalysis
- IX. Concluding Comments

POLYMERS IN DISORDERED MEDIA

A. BAUMGÄRTNER

Institut für Festkörperforschung Forschungszentrum, Jülich, Germany

M. MUTHUKUMAR

Department of Polymer Science University of Massachusetts Amherst,

Massachusetts

- I. Introduction
- II. Conformations and Critical Phenomena
 - A. Self-Avoiding Walks on Fractal Lattices
 - 1. Scaling Laws and Mean-Field Theories
 - 2. Fisher-Harris Criterion
 - B. Polymers on Diluted Lattices and in Porous Media
 - 1. Mean-Field Theory: Replica Method
 - 2. Mean-Field Theory: Flory Approach
 - 3. Simulations and Finite-Size Scaling
 - C. Disorder Effects on Phase Transitions
 - 1. Adsorption on Heterogeneous Surfaces
 - 2. Disorder-Induced Adsorption
 - 3. Liquid Crystalline Polymers in Porous Media
- III. Diffusion and Trapping
 - A. Anomalous Diffusion
 - 1. Monte Carlo Simulations
 - 2. Fractality and Crossover Scaling
 - B. Entropic Barrier Model for Polymers
 - 1. Diffusion in Random Media and Polymer Liquids
 - 2. Electrophoresis

Advances in Chemical Physics, Volume XCIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-14324-3 © 1996 John Wiley & Sons, Inc.