

KINETICS AND DYNAMICS OF HYDROGEN ADSORPTION AND DESORPTION ON SILICON SURFACES	1
By Douglas J. Doren	
POTENTIAL ENERGY SURFACES OF TRANSITION-METAL-CATALYZED CHEMICAL REACTIONS	61
By Djamaladdin G. Musaev and Keiji Morokuma	
HIGH-RESOLUTION HELIUM ATOM SCATTERING AS A PROBE OF SURFACE VIBRATIONS	129
By Sanford A. Safron	
Ordering and Phase Transitions in Adsorbed Monolayers of Diatomic Molecules	213
By Dominik Marx and Horst Wiechert	
Author Index	395
Subject Index	415

KINETICS AND DYNAMICS OF HYDROGEN ADSORPTION AND DESORPTION ON SILICON SURFACES

DOUGLAS J. DOREN

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware

- I. Introduction
- II. Overview and Nomenclature
- III. Experimental Observations
 - A. Summary
 - B. Desorption Kinetics
 - 1. Early Work
 - 2. $Si(111)-7 \times 7$
 - 3. $Si(100)-2 \times 1$
 - 4. Verification of Structure-Dependent Desorption Mechanism
 - 5. Evidence for Prepairing
 - 6. Desorption After Dosing with Silanes
 - 7. Other Covalent Surfaces
 - 8. Desorption from the Dihydride Phase
 - C. Energy Distribution of Desorbing H₂
 - 1. Rotational and Vibrational Energy
 - 2. Translational Energy
 - 3. Surface Energy
 - D. Sticking Probability
 - 1. Measurements of Sticking Probability
 - 2. A Model of Adsorption and Desorption Dynamics
- IV. First Principles Theory
 - A. Evidence Against the Prepairing Mechanism
 - 1. Thermodynamics
 - 2. Activation Energies and Alternative Mechanisms
 - 3. Critique of Defect-Mediated Mechanisms

Advances in Chemical Physics, Volume XCV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-15430-X © 1996 John Wiley & Sons, Inc.

- B. Evidence Supporting the Prepairing Mechanism
- C. Comparison of Theoretical Results
- D. Inferences About Kinetics and Dynamics
- E. Desorption from the Dihydride
- V. Remaining Issues

Acknowledgments

POTENTIAL ENERGY SURFACES OF TRANSITION-METAL-CATALYZED CHEMICAL REACTIONS

DJAMALADDIN G. MUSAEV AND KEIJI MOROKUMA

Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia

CONTENTS

- I. Introduction
- II. Oxidative Addition
 - A. Oxidative Addition to d^8 Species
 - B. Oxidative Addition of H-X Bonds on the CpML Species
 - C. Oxidative Addition to d^{10} ML₂ and Related Systems
 - D. Special Topics: Dihydride-Dihydrogen Rearrangement in the Transition-Metal Polyhydride Complexes
 - E. Summary
- III. Metathesis
 - A. Summary
- IV. Olefin Insertion
 - A. Summary
- V. Full Catalytic Cycles
 - A. Olefin Hydroboration Catalytic Cycle by Rh(PR₃)₂Cl
 - B. Silastannation of Acetylene with a Palladium Catalyst
 - C. Hydroformylation Catalytic Cycle by RhH(CO)₂(PR₃)₂
 - D. Summary
- VI. Perspectives of Quantum Chemical Studies of Organometallic Reactions and Homogeneous Catalysis

HIGH-RESOLUTION HELIUM ATOM SCATTERING AS A PROBE OF SURFACE VIBRATIONS

SANFORD A. SAFRON

Department of Chemistry, Florida State University, Tallahassee, Florida

- I. Introduction
 - A. Overview
 - B. Scope
- II. Lattice Vibrations
 - A. One-Dimensional Models
 - B. Extension to Surface Dynamics
- III. Inelastic Atom-Surface Scattering
 - A. Atom-Single-Phonon Scattering
 - B. Atom-Multiphonon Scattering
- IV. Time-of-Flight Scattering Instrument
- V. Clean Crystalline Surfaces: Ionic Insulators
 - A. Alkali Halides
 - 1. LiF
 - 2. KBr and RbCl
 - 3. RbI
 - 4. NaF, KCl, and RbBr
 - 5. NaCl, NaI, and CsF
 - B. Metal Oxides
 - 1. NiO, CoO, and MgO
 - 2. KMnF₃ and High- T_C Superconductors
 - C. Multiphonon Excitations
- VI. Clean Crystalline Surfaces: Sampling of Materials
 - A. Metallic Surfaces
 - 1. Cu, Ag, and Au
 - 2. Nb, Mo, and W
 - B. Layered Materials
- VII. Epitaxially Grown Overlayers, Adsorbates, and Films
 - A. Alkali Halide/Alkali Halide Systems
 - 1. KBr/NaCl(001)

Advances in Chemical Physics, Volume XCV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-15430-X © 1996 John Wiley & Sons, Inc.

- 2. KBr/RbCl(001)
- 3. KCN/KBr(001)
- B. Adsorbate/Metal Systems
 - 1. Na/Cu(001)
 - 2. Ar or Kr/Ag(111) and Kr/Pt(111)
 - 3. Frustrated Translations: Benzene and CO on Rh(111)
- C. Organic Films
- VIII. Concluding Remarks

Acknowledgments

ORDERING AND PHASE TRANSITIONS IN ADSORBED MONOLAYERS OF DIATOMIC MOLECULES

DOMINIK MARX

Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

HORST WIECHERT

Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany

- I. Preliminary Remarks
 - A. Introduction
 - B. Molecular and Bulk Properties of N₂ and CO
 - C. Substrates and Coverage
- II. Orientational Ordering on a Triangular Lattice
 - A. Ground States and Mean-Field Theory
 - B. Anisotropic-Planar-Rotor Model and Some Generalizations
 - C. Symmetry Classification
- III. N₂ on Graphite
 - A. Phase Diagram
 - B. Submonolayers and Melting
 - C. Tricritical Point
 - D. Commensurate Herringbone Ordering
 - 1. Ground State and Orientational Order-Disorder Transition
 - 2. Order of the Phase Transition
 - E. Compressed Monolayers
- IV. N₂ on Boron Nitride
- V. CO on Graphite
 - A. Phase Diagram
 - B. Submonolayers and Melting
 - C. Tricritical Point
 - D. Commensurate Herringbone Ordering

Advances in Chemical Physics, Volume XCV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-15430-X © 1996 John Wiley & Sons, Inc.

- E. Commensurate Head-Tail Ordering
- F. Compressed Monolayers
- VI. CO on Boron Nitride
- VII. Concluding Remarks
 Acknowledgments

