	*				
As					
					₹0
			102 53	<u>3</u> 2	
	•ú				

Contents

1.	The	Transport Equation	1
	1-1	Introduction	
	1-2	Particle Interactions Assumptions, 3 Cross Section Definitions, 4 Neutron Cross Sections, 7 Gamma Ray Cross Sections, 8 Scattered Particle Distributions, 10 Fission Neutron Distribution, 14	
	1-3	Particle Streaming Particle Distributions, 16 The Streaming-Collision Operator, 20 Boundary Conditions, 25 Inversion of the Streaming-Collision Operator, 27 Streaming in Curvilinear Coordinates, 28	16
	1-4	Transport with Secondary Particles Nonmultiplying Systems, 34 Multiplying Systems without Delayed Neutrons, 38 The Neutron Kinetics Equations, 39	34
	1-5	The Time-Independent Transport Equation Fixed Source and Eigenvalue Problems, 43 The α Eigenvalue, 45 The k Eigenvalue, 46	42
	1-6	The Adjoint Transport Equation Nonmultiplying Systems, 47 Multiplying Systems, 52	47

				s)
100			и	•
٦	4	T	п	ı
7	к		и	ł

Kii ———			Contents
	An A	rences Abbreviated List of Related Texts blems	55 56 57
2.	Energy and Time Discretization		
	2-1	Introduction	61
	2-2	The Multigroup Equations Energy Separability, 63 Multigroup Cross Section Evaluation, 68 Alternative Derivation, 73	61
	2-3	Fixed Source Problems Nonmultiplying Systems, 78 Solution of Within-Group Equations, 80 Acceleration of Within-Group Calculations, 83	78
	2-4	Criticality Calculations Power Iteration Solution, 92 Acceleration by Extrapolation Methods, 95 Acceleration by the Rebalance Method, 95 Synthetic Acceleration Methods, 97	90
	2-5	Time-Dependent Problems Forms of the Kinetics Equations, 104 Differencing of the Prompt Neutron Approximation, 106 Delayed Neutron Kinetics, 108	103
		Delayed Neutron Kinetics, 108 rences lems	111 112
3.	Dis	crete Ordinates Methods In One Spatial Dimension	116
	3-1	Introduction	116
	3-2	Angular Approximations The Discrete Ordinates Formulation, 118 Legendre Polynomial Approximations, 120 Comparison of Angular Approximations, 123	117
	3-3	Spatial Differencing and Solution Diamond Difference Equations, 128 Spatial Truncation Error, 131 Alternative Difference Schemes, 133	127

contents	xiii

	3-4	Curvilinear Coordinates Angular Discretization, 137 Spatial Differencing, 140	135
	3-5	Acceleration Coarse Mesh Rebalance, 145 Synthetic Method, 147 Comparison of Methods, 149	145
	151	erences	151
	Prot	olems	153
4.	Muli	dimensional Discrete Ordinates Methods	156
	4-1	Introduction	156
	4-2	Discrete Ordinates Quadrature Sets Level Symmetric Quadrature, 158 Quadrature with Reduced Symmetry, 162	156
	4-3	Difference Equations: Cartesian Coordinates $x-y$ Geometry, 166 $x-y-z$ Geometry, 172	166
	4-4	Difference Equations: Curvilinear Coordinates Angular Discretization, 177 Spatial Differencing, 180 Acceleration Consideration, 185 Infinite Cylindrical Geometry, 186	175
	4-5	Triangular Mesh Difference Equations Space – Angle Differencing, 188 Solution Algorithms, 192	188
	4-6	Ray Effects The Ray Effect Phenomenon, 195 Ray Effect Remedies, 198 Errors from Ray Effects, 200	194
		rences olems	203 205
5.	Inte	gral Transport Methods	208
	5-1	Introduction	208
	5-2	Derivation of the Integral Equations The Angular Flux Equation, 209 The Scalar Flux Equation, 211	209

V	
A	

	5-3	Slab Geometry The Scalar Flux Equation, 213 The Collision Probability Method, 215 Slab Lattice Problems, 218	213
	5-4	Integral Transport in Two Dimensions The Two-Dimensional Equations, 220 Two-Dimensional Collision Probability Formulation, 225	220
	5-5	Application of Integral Transport Methods Unit Cell Calculations, 230 Response Matrix Formulation, 235	228
	5-6	Evaluation of Collision Probabilities Ray Tracing Methods, 241 Optical Reciprocity Relationships, 248	241
		erences olems	252 254
6.	Ever	n-Parity Transport Methods	257
	6-1	Introduction	257
	6-2	The Even-Parity Transport Formulation Derivation, 258 Variational Formulation, 261 The Ritz Procedure, 264	258
	6-3	Spatial Finite Elements The Diffusion Approximation, 266 Spatial Discretization in One Dimension, 268 Spatial Discretization in Two Dimensions, 272	266
	6-4	Slab Geometry Transport Methods The Variational Problem, 278 Spatial Discretization, 279 Treatment of the Angular Variable, 281	278
	6-5	Two-Dimensional Transport Angular Approximation, 286 Spatial Discretization, 289	285
		rences olems	291 293

Contents	XV
	N N-

7.	The Monte Carlo Method		
	7-1	Introduction	296
	7-2	Probability Distribution Functions Functions of a Single Random Variable, 299 Distribution Sampling, 302 Functions of Two Random Variables, 305	299
	7-3	Analog Monte Carlo Sampling Tracking Procedure, 309 Tallies, 310	309
	7-4	Error Estimates Expectation Values, 314 Variance, 315 The Central Limit Theorem, 319	313
	7-5	An Example Calculation Monte Carlo Calculations, 322 Analytical Solution, 324	321
	7-6	Nonanalog Monte Carlo Properties of Variance, 327 Importance Sampling, 329 Variance Reduction Methods, 331	327
	7-7	Tracking in Phase Space Cross Sections and Collisions, 339 Tallies, 343 Geometrical Tracking, 346	339
	7-8	Criticality Calculations Estimation of Multiplication, 351 Error Evaluations, 354	350
		rences lems	356 358
\PI	PEND	IXES	361
	100000 1000000000000000000000000000000	e Useful Mathematical Functions rences, 369	361
}	Truncation Error, Stability, and Convergence References, 376		370

xvi		Contents
C	Matrix Notation and Methods References, 386	377
D	Legendre Approximations in Slab Geometry References, 396	387
IN	DEX	397

•