Contents

Preface	v
Chapter 1 Understanding the problem	1
Acceptability of nuclear power	1
Public attitudes	4
Public fears	8
Apocalypse Now	11
The social debate	12
The environmental movement	15
The opposition to nuclear power	19
The bomb	22
Information	23
Appendix	26
Subsistence-minded	26
Security-minded	26
Group-faithfuls	27
Status seekers	27
Movers	27
Self-faithful	28
Experience seekers	
Reformers	28
Notes and references	29
Chapter 2 Energy need	31
Population growth	31
Social and economic change	34
Urbanization	35
The North-South divide	45
Notes and references	48
Chapter 3 Energy demand and supply	49
Available resource	55
Renewable energies	65
Regional energy balances and nuclear needs	66
North America: USA and Canada	66
Eastern Europe: Albania, Bulgaria, Czechoslovakia, East Germany,	
Hungary, Poland, Romania, and USSR	67
Western Europe: EEC, Nordic countries, Austria, Switzerland,	
Israel, Portugal, Turkey, and Yugoslavia	68
Industrialized Pacific countries	69
North Africa and Middle East	70
Africa south of the Sahara	70
Indian Subcontinent	70

•••	
VIII	CONTENTS
Y I I I	CONTENT

South East Asia	71
Communist Asia	72
Latin America	73
World trade	73
Imposed constraints	74
Conclusions	75
Notes and references	75
Appendix — World regional energy divisions	76
Chapter 4 Radioactivity and nuclear power	78
Sources of radiation	79
Paths of exposure	80
Atmospheric dispersion	81
Aquatic dispersion	83
Measurements of radiation	83
Radiation dose	84
Doses received	87
Natural radiation dose	87
Man-made radiation	89
Nuclear power industry	91
The effects of radiation	92
Radiological protection	94
Radiation dose limits	96
Understanding radiation limits	98
Actual harm?	99
Healthy workers	102
Cancer incidence and nuclear installations	103
Radiation in perspective	106
Is radiation good for you?	108
Notes and references	109
Chapter 5 Environmental and economic advantage	111
The nuclear fuel cycle	112
Uranium mining and ore processing	112
Mining hazards	114
Fuel fabrication	115
Enrichment	116
Nuclear power plants in operation	116
Reactor types	117
Fast reactors	118
Inherently safe reactors	119
Reactor wastes	120
Reprocessing	120
Direct disposal of irradiated fuel	122
Waste production	122
Reprocessing plants	123
Radioactive discharges	124
Waste disposal	126
Heat-generating wastes	134
Transport	136
Decommissioning	138

CONTENTE	
CONTENTS	1 X

Is it worth it?	140
Environmental advantage	140
Greenhouse effect	144
Health and safety advantages	146
Economic advantage	147
Notes and references	150
Chapter 6 Accident risks	151
Design for safety	153
Quality assurance	155
Design targets	156
Unacceptable accidents	157
Human factors	161
Three Mile Island	164
Chernobyl	165
Emergency planning	169
Public risk	170
Toleration of risk	172
Notes and references	177
Chapter 7 Atoms for peace?	179
International safeguards	181
Notes and references	187
Chapter 8 Public participation	188
Public inquiries	191
Parliamentary committees	193
Local participation	195
Local consultation	196
Remote monitoring	198
Visiting nuclear sites	198
Notes and references	199
Chapter 9 Summary and conclusions	200
Is it economic?	200
Is it needed?	201
Environmental advantage	202
Are safety levels adequate?	203
Is radiation dangerous?	204
Can waste be disposed of safely?	205
To reprocess or not	205
Public participation	206
Insights from history	208
Conclusion	211
Notes and references	213