contents

	Preface	vi
1	Introduction	
	Characterization of Radiation Fields and Sources 2.1 Fundamental radiation field variables 7 2.2 Directional properties of the radiation field 14 2.3 Dosimetric quantities of a purely physical nature 18 2.4 Radiation quantities closely related to biological risk 2.5 General source properties 25 2.6 Conversion from distributed to discrete concepts, and versa 27	

3	Inte	eraction of Radiation with Matter	32
ij¥	3.1	Interaction coefficient 32	
	3.2	Microscopic cross section 34	
	3.3	Cross sections for photon interactions 36	
	3.4	Photon attenuation coefficients 44	
	3.5	Photon absorption coefficients and related quantities	44
	3.6	Cross sections for neutron interactions 48	
	3.7	Neutron scattering interactions 53	
	3.8	Radiative capture 64	
	3.9	Penetration of charged particles through matter 65	
4	Com	nmon Radiation Sources Encountered	
	in S	Shield Design	78
	4.1	Neutron sources 79	
	4.2	Sources of gamma photons 90	
	4.3	Sources of x rays 105	
5	Det	ector Response Functions	121
	5.1	General formulation for dosimetric detectors 122	
	5.2	Relationship of kerma rate and absorbed dose rate: cha	irged-
		particle equilibrium 123	
	5.3	Neutron kerma, absorbed dose, and dose equivalent rates 126	
	5.4	Dosimetric response functions for photons 128	
	5.5	Response functions for evaluation of hazards to h beings 134	uman
	5.6	Concluding remarks 140	
6	Basi	ic Concepts in Neutral Particle	
	Pen	etration	145
	6.1	Uncollided-particle attenuation and mean free path	145
	6.2	Total detector response 149	.73
	6.3	Approximation formulas for total response 153	
	6.4	Ray analysis technique 155	
	6.5	Point kernel 175	

	6.6 6.7	Geometric transformations 177 Special concepts useful for design purposes 184	
7	Spe	cial Techniques in Photon Attenuation	189
	7.1	Photon buildup-factor concept 189	
	7.2	Buildup-factor values and empirical approximations	192
	7.3	Complex aspects of the buildup factor 196	
	7.4	Extension of point-kernel techniques to incorporate	
	7.5	buildup 199 Special techniques for medical facilities 201	
8	Spec	cial Techniques in Neutron Attenuation	218
2.0 (6)	8.1	Differences between fast-neutron and photon flux decalculations 220	nsity
	8.2	Attenuation of fast neutrons from fission sources in higher genous media 221	ydro-
	8.3	Removal cross sections 228	
	8.4	Fast-neutron attenuation in nonhydrogenous media 2	38
	8.5	Calculation of the intermediate and thermal flux densities 240	
	8.6 8.7	Capture-gamma-photon attenuation 250 Neutron shielding by concrete slabs 254	
9	App	roximate Techniques Under Special	
	Geo	metric Conditions	266
	9.1	Albedo concept 266	
	9.2	Radiation streaming through ducts 285	
	9.3	Treatment of shield heterogeneities 301	
10	The	Transport Description of Radiation	
	Pene	etration	310
	10.1	Transport equation 310	
	10.2	Approximations to the transport equation 329	
	10.3	Method of moments 337	
	10.4	Discrete-ordinates method 343	
	10.5	Monte Carlo method 348	

366

11

11 11 11 11	.2 Radiation damage 379 .3 Thermal effects 387
A	ppendices
	Constants and conversion factors 408
. 2	Mathematical functions of importance in shielding analysis 411
3	Cross sections and related data for photon and neutron

Buildup factors for gamma photons 444

Material and Structural Considerations

in Shield Design

interactions 423

source strengths 468

6

Index 478

Parameters for use in calculating fission-product photon

Decay characteristics of selected radionuclides 459