Table of Contents

Preface ix
Editorial Committee xiii
Chapter I. Flowfield Analysis 1
Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles
JH. Lee, NASA Ames Research Center, Moffett Field, California
Complete Flowfields Over Low- and Wide- Angle AOTV Conceptual Configurations
AOTV Bluff Body Flow—Relaxation Algorithm
Direct Simulation of Transitional Flow for Hypersonic Re-entry Conditions
Chapter II. Trajectories141
Performance Evaluation of the Atmospheric Phase of Two Aeromaneuvering Orbital Transfer Vehicles
Performance Aerodynamics of Aeroassisted Orbital Transfer Vehicles

Multiple Pass Trajectories for an Aeroassisted Orbital
Transfer Vehicle186
J.J. Rehder, NASA Langley Research Center, Hampton, Virginia
Impact of Atmospheric Uncertainties and Viscous Interaction Effects on the Performance of Aeroassisted Orbital Transfer Vehicles
T.A. Talay, N.H. White, and J.C. Naftel, NASA Langley Research Center, Hampton, Virginia
Analytical Characterization of AOTV Perigee
Aerothermodynamic Regime
D. Desautel, San Jose State University, San Jose, California
Chapter III. Thermal Protection255
Thermal Protection Requirements for Near-Earth Aeroassisted
Ordital Transfer Venicle Missions
G.P. Menees, NASA Ames Research Center, Moffett Field, California
Design and Performance Analysis of a Conical Aerobrake
Orbital Transfer Vehicle Concept
G.P. Menees and C. Park, NASA Ames Research Center,
Moffett Field, California, and J.F. Wilson, Informatics General
Corporation, Palo Alto, California
An AOTV Aeroheating and Thermal Protection Study
C.D. Scott, R.C. Ried, R.J. Maraia, CP. Li, and S.M. Derry,
NASA Johnson Space Center, Houston, Texas
Aerothermodynamic Heating Analysis of Aerobraking and
Aeromaneuvering Orbital Transfer Vehicles
G.P. Menees, NASA Ames Research Center, Moffett Field,
California, C.B. Davies and J.F. Wilson, Informatics General
Corporation, Palo Alto, California, and K.G. Brown, NASA
Ames Research Center, Moffett Field, California
Thermal Response of an Aeroassisted Orbital Transfer Vehicle
with a Conical Drag Brake361
W.C. Pitts, NASA Ames Research Center, Moffett Field,
California, and M.S. Murbach, Informatics General Corporation,
ruio Allo, California

Low Lift-to-Drag Aerobrake Heat-Transfer Test at Mach 10378 P. KT. Shih and A. Gay, General Dynamics Convair Division, San Diego, California
Calculation of Nonequilibrium Radiation in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles
Air Radiation Revisited
Chapter IV. Surface Effects443
Temperature-Dependent Reaction Rate Expressions for Oxygen Recombination
Surface-Slip Equations for Low Reynolds Number Multicomponent Air Flow
Comparison of Viscous Shock-Layer Heating Analysis with Shuttle Flight Data in Slip Flow Regime
Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles
Progress in Noncatalytic Surfaces for Metallic Heat Shields538 R.T. Swann, G.M. Wood Jr., and R.D. Brown, NASA Langley Research Center, Hampton, Virginia, B.T. Upchurch and G.J. Allen, Old Dominion University, Norfolk, Virginia
Author Index for Volume 96