Contents

Pref	· · · · · · · · · · · · · · · · · · ·		•		. ,
Intro	oduction	•	•	•	. 1
Сна	PTER 1 Fundamentals				
1.1	Introduction				. 4
1.2	Storage of arrays, lists, stacks and queues				. 5
1.3					. 8
1.4	Storage of lists of integers				. 10
1.5	Diagonal storage of band matrices				. 13
1.6	Envelope storage of symmetric matrices .				. 14
1.7	- 4 4 4				. 16
1.8	The sparse row-wise format				. 20
1.9	Ordered and unordered representations .				. 22
1.10	Sherman's compression				. 23
1.11	Storage of block-partitioned matrices .				. 25
1.12	Symbolic processing and dynamic storage sche	emes			. 27
	Merging sparse lists of integers				. 30
1.14	The multiple switch technique				. 31
1.15	Addition of sparse vectors with the help of a	n ex	pande	ed rea	
	accumulator				
1.16	Addition of sparse vectors with the help of an e	expai	nded i	ntege	r
	array of pointers				
1.17	Scalar product of two sparse vectors with the	help	of an	arra	y
	of pointers				. 36
Снаі	PTER 2 Linear Algebraic Equations				
					•
2.1	Introduction	•	•	•	. 38
2.2	Some definitions and properties	•	•	•	. 41
2.3	Elementary matrices and triangular matrices		•	•	. 43
2.4	Some properties of elementary matrices .		•	•	. 45
2.5	Some properties of triangular matrices		•	•	. 46
2.6	Permutation matrices				. 48

X CONTENTS

2.7	Gauss elimination by columns				
2.8	Gauss elimination by rows				
2.9	Gauss-Jordan elimination				
2.10	Relation between the elimination form of t	he inv	verse	and	the
	product form of the inverse				
2.11	Cholesky factorization of a symmetric positi	tive d	efinit	e mat	rix
2.12	Practical implementation of Cholesky factor	rizatio	n.		
2.13	Forward and backward substitution .				
	Cost considerations				
	Numerical examples				
Сна	PTER 3 Numerical Errors in Gausss Eliminat	ion			
3.1	Introduction				
3.2	Numerical errors in floating point operation	is .			•
3.3	Numerical errors in sparse factorization.				
3.4	Numerical errors in sparse substitution .				
3.5	The control of numerical errors				
3.6	Numerical stability and pivot selection .				
3.7	Monitoring or estimating element growth				
3.8	Scaling	•			
Сна	PTER 4 Ordering for Gauss Elimination: Syn	ımetri	c Ma	trices	
4.1	Introduction: Statement of the problem .				
4.2	Basic notions of graph theory				
4.3	Breadth-first search and adjacency level stru				
4.4	Finding a pseudoperipheral vertex and a nar	row l	evel s	structi	ıre
	of a graph				
4.5	Reducing the bandwidth of a symmetric ma				
4.6	Reducing the profile of a symmetric matrix				
4.7	Graph-theoretical background of symmetric	Gaus	s elir	ninati	on
4.8	e e				•
4.9	Tree partitioning of a symmetric sparse mat	rix			
4.10	Nested dissection				•
	Properties of nested dissection orderings.				•
		•			•
4.13	One-way dissection for finite element proble	ems			
	Orderings for the finite element method .		•		
4.15	Depth-first search of an undirected graph				
4.16	Lexicographic search				
	Symmetric indefinite matrices				

CONTENTS Xi

Сна	PTER 5 Ordering for Gauss Elimination: General	al Ma	trice	S		
5.1	Introduction: Statement of the problem .	. ,			. 1	59
5.2	Graph theory for unsymmetric matrices.		•		. 1	62
5.3	The strong components of a digraph				. 1	65
5.4	Depth-first search of a digraph				. 1	69
5.5	Breadth-first search of a digraph and directed					
	structures					72
5.6	Finding a maximal set of vertex disjoint path					
	digraph					74
5.7	Finding a transversal: the algorithm of Hall				. 1	76
5.8	Finding a transversal: the algorithm of Hopere					79
5.9	The algorithm of Sargent and Westerberg for fi			_	g	
	components of a digraph	_			-	85
5.10	The algorithm of Tarjan for finding the strong					
	digraph					87
5.11	Pivoting strategies for unsymmetric matrices				. 1	91
	Other methods and available software .				. 1	94
Сна	PTER 6 Sparse Eigenanalysis					
6.1	Introduction				. 1	96
6.2	The Rayleigh quotient				. 2	200
6.3	Bounds for eigenvalues				. 2	202
6.4	The bisection method for eigenvalue calculation	ns	•		. 2	204
6.5	Reduction of a general matrix				. 2	205
6.6	Reduction of a symmetric band matrix to tridia					207
6.7	Eigenanalysis of tridiagonal and Hessenberg m	natric	es		. 2	209
6.8	Direct and inverse iteration		•		. 2	210
6.9	Subspaces and invariant subspaces				. 2	214
6.10	Simultaneous iteration					216
6.11	Lanczos algorithm			•		220
6.12	Lanczos algorithm in practice	•			. 2	225
6.13	Block Lanczos and band Lanczos algorithms				. 2	227
6.14	Trace minimization				. 2	230
6.15	Eigenanalysis of hermitian matrices.	•			. 2	230
6.16	Unsymmetric eigenproblems				. 2	231
Сна	PTER 7 Sparse Matrix Algebra					
7.1	Introduction				. 2	234
	Transposition of a sparse matrix					236
	A A WARD DOLOTOTAL OF AN OPERATOR ASSESSMENT TO THE	-	-		_	_ •

xii CONTENTS

7.3	Algorithm for the transposition of a general sparse matrix .
7.4	Ordering a sparse representation
7.5	Permutation of rows or columns of a sparse matrix: First
	procedure
7.6	Permutation of rows or columns of a sparse matrix: Second
	procedure
7.7	Ordering of the upper representation of a sparse symmetric
	matrix
7.8	Addition of sparse matrices
7.9	Example of addition of two sparse matrices
	Algorithm for the symbolic addition of two sparse matrices with
	N rows and M columns
7.11	Algorithm for the numerical addition of two sparse matrices
	with N rows
7.12	Product of a general sparse matrix by a column vector .
	Algorithm for the product of a general sparse matrix by a full
	column vector
7.14	Product of a row vector by a general sparse matrix
	Example of product of a full row vector by a general sparse
	matrix
7.16	Algorithm for the product of a full row vector by a general
	sparse matrix
7.17	Product of a symmetric sparse matrix by a column vector .
	Algorithms for the product of a symmetric sparse matrix by a full
	column vector
7.19	Multiplication of sparse matrices
	Example of product of two matrices which are stored by rows
	Algorithm for the symbolic multiplication of two sparse
	matrices given in row-wise format
7.22	Algorithm for the numerial multiplication of two sparse
	matrices given in row-wise format
7.23	Triangular factorization of a sparse symmetric matrix given in
	row-wise format
7.24	Numerical triangular factorization of a sparse symmetric matrix
	given in row-wise format.
7.25	Algorithm for the symbolic triangular factorization of a sym-
	metric sparse matrix A
7.26	Algorithm for the numerical triangular factorization of a
= 3	symmetric positive definite sparse matrix A
7.27	Example of forward and backward substitution
	Algorithm for the solution of the system $U^TDUx = b$.

X111
7111

Сна	PTER 8 Connectivity and Nodal Assembly		
8.1	Introduction		. 271
8.2	Boundary conditions for scalar problems		. 274
8.3	Boundary conditions for vector problems		. 275
8.4	Example of a connectivity matrix		. 279
8.5	Example of a nodal assembly matrix		. 280
8.6	Algorithm for the symbolic assembly of a symmetric r	noda	1
	assembly matrix		. 282
8.7	Algorithm for the numerical assembly of an element matrix	x and	l
	vector into the nodal assembly matrix A and right-hand v	ecto	r
	b : Symmetric case		. 283
8.8	Algorithm for the numerical assembly of an element matrix	x and	l
	vector into the nodal assembly matrix A and right-hand v	ecto	r
	b : General case		. 286
Сна	PTER 9 General Purpose Algorithms		
9.1	Introduction		. 288
9.2	Multiplication of the inverse of a lower triangular matrix	by a	ı
	general matrix	•	. 289
9.3	Algorithm for the symbolic multiplication of the inverse	of a	ì
	lower triangular matrix \mathbf{U}^{-T} by a general matrix \mathbf{B} .		. 290
9.4	Algorithm for the numerical multiplication of the inverse	of a	ì
	lower triangular matrix \mathbf{U}^{-T} by a general matrix \mathbf{B} .		202
9.5	Algorithm for the multiplication of the inverse of an u	appe	r
	triangular unit diagonal matrix U by a full vector x.		. 293
9.6	Algorithm for the multiplication of the transpose inverse	of ar	1
	upper triangular unit diagonal matrix U by a full vector		. 294
9.7	Solution of linear equations by the Gauss-Seidel iter	ative	2
	method		. 295
9.8	Algorithm for the iterative solution of linear equations b	-	
	Gauss–Seidel method		. 295
9.9			. 297
	Printing or displaying a sparse matrix		. 298
9.11	Algorithm for transforming a RR(C)U of a symmetric m		
	into a RR(U)U of the same matrix		. 298
9.12	Algorithm for the pre-multiplication of a sparse matrix A		
	diagonal matrix D		. 299
9.13	Algorithm for copying a sparse matrix from IA, JA, AN t		
	JB, BN		. 300
Refe	rences		. 301
	ect Index		. 313