Contents | PREFACE
LIST OF SYMBOLS | i
3 | |---|----------------------------| | Model of the Fully Ionized Plasma
and the Coulomb System | | | Part 1 The Fully Ionized System in the Quasistatic
Electromagnetic Field, The Coulomb System | | | Chapter I Equilibrium States of the Coulomb System | | | 1. Review of the Basic Concepts 1.1 Liouville's Law 1.2 The Statistical Ensembles | | | Macroscopic Qualities Relations between the Thermodynamic Potentials and the Canonical
Partition Function Relations between the Thermodynamic Potentials and the Macrocanoncial
Partition Function | 1 | | 3. Partition Function of the Coulomb System 3.1 The Problem 3.2 Elements of Cluster Expansions 3.3 Irreducible Clusters 3.4 The Prototype Cluster Expansions 3.5 The Giant Cluster Expansions | 1
1
1
2
2
3 | | Microscopic Qualities of the Coulomb System Distribution of the Individuals in Phase Space The Hierarchy Physical Interpretation of the Hierarchy Approximate Solution of the Hierarchy Single-Particle Approach The Poisson-Boltzmann Equation | 3
3
4
4
4
4 | v | vi con | TENTS | CONTENTS | vii | |--|---|--|--------------------------| | 4.7 The Pair Approximation 4.8 Solution of the Generalized Poisson-Boltzmann Equation 4.9 The Born-Green Equation 4.10 Distributions of Dependent Quantities 4.11 The Microfield Distribution | 50
59
61
64
65 | Chapter IV Nonequilibrium States of the Coulomb System with Individual Particle Correlations 1. Derivation of Kinetic Equations from the BBGKY Hierarchy | 141 | | 5. The Fluctuation-Dissipation Theorem 5.1 Derivation of the General Theorem 5.2 Fluctuation-Dissipation Theorem for the Coulomb System References and Supplementary Reading | 73
73
76
77 | 1.1 General Basis1.2 The Boltzmann Equation1.3 The Landau-Fokker-Planck Equation1.4 The Bogolubov-Lenard-Balescu Equation | 141
150
156
166 | | Chapter II NONEQUILIBRIUM STATES OF THE COULOMB SYSTEM, GENERAL DESCRIPTION 1. The Exact Density Distribution of the Single System | 81 | Macroscopic Equations Moment Equations from the Boltzmann Equation: The Grad Method Moment Equations from the Boltzmann Equation: The Chapman-Enskog Method Moment Equations from the Bhatnagar-Gross-Krook Equation | 176
176
188
198 | | The Klimontovich Equations The Average Distributions of Gibbs' Ensemble Derivation of the BBGKY Hierarchy from the Klimontovich Equations References and Supplementary Reading | 81
84
84
90 | 3. Review of Systematic Methods 3.1 Bogolubov's Theory 3.2 Extension of Bogolubov's Theory to Plasmas 3.3 Multiple Time-Scales Formalism | 201
201
209
217 | | Chapter III Nonequilibrium States of the Coulomb System, Description without Individual Particle Correlations | | References and Supplementary Reading | 221 | | The Vlasov Approach The Vlasov Equation General Properties The Linear Approximation | 91
91
94
96 | Part 2 The Fully Ionized System in the General
Electromagnetic Field | | | Solutions of the Linear Vlasov Equation The Eigensolution Method Particle Beams with a Sharp Velocity Spherical Distribution of Monoenergetic Particles The Packet Distributions The Gap Distributions Arbitrary Distributions—Penrose Criterion | 97
97
100
102
104
106
109 | Chapter V SINGLE-PARTICLE RADIATION 1. General Formulation of Electromagnetic Fields 1.1 Basic Equations of Electrodynamics 1.2 The Electrodynamic Potentials 1.3 The General Electromagnetic Fields | 227
227
230
234 | | 3. Fourier Transformation in Time3.1 The External Perturbation Problem3.2 The Initial Value Problem | 113
114
117 | 1.4 The Liénard-Wiechert Potentials 2. General Formulation of Radiation Fields 2.1 Multipole Expansion of the Field Calculated from the Hertz Vector | 235
237
237 | | 4. Landau's Treatment of the Vlasov Equation4.1 Landau's Solution4.2 General Aspects of Landau Damping | 118
118
129 | 2.2 Electromagnetic Field of a Single Charge 2.3 Angular and Frequency Distribution of the Energy Radiated from a Charge | 241
243 | | 5. Van Kampen's Treatment of the Vlasov Equation 5.1 The Adjoint Vlasov Equation 5.2 Completeness of Van Kampen's Modes 5.3 Solution of the Initial Value Problem by Eigensolution Expansion— | 131
133
134 | 3. Bremsstrahlung 3.1 Classical Description 3.2 Results of the Quantum-Mechanical Description | 246
246
251 | | Comparison with Landau's Result References and Supplementary Reading | 137
138 | 4. Cyclotron Radiation References and Supplementary Reading | 255
262 | viii CONTENTS ## Chapter VI Many-Particle Interactions with Electromagnetic Fields | 1. | Basic Equations | 26 | |----|--|---------------------------------| | 2. | Solution with Collective Particle Correlations Only 2.1 Basic Equations and Linearization Procedure 2.2 The Conductivity Tensor and the Dielectric Tensor 2.3 The Dispersion Relation 2.4 Electromagnetic Instabilities | 26
26
27
27
27 | | 3. | Solutions Including Individual Electron-Ion Correlations 3.1 The Model of Dawson and Oberman 3.2 Description with the Fokker-Planck Equation | 28
28
29 | | 4. | Collective Description of Particle Dynamics—Individual Description of Emission Processes—Light Scattering 4.1 Individual Electron Emission from the Plasma 4.2 Scattering for a Correlation-Free System 4.3 Scattering in a System with Collective Correlations 4.4 Application of the Fluctuation-Dissipation Theorem | 299
300
300
300
314 | | 5. | Radiation Transport 5.1 The Transport Equation 5.2 Some Remarks on the Boundary Conditions | 31-
31-
31 | | Re | eferences and Supplementary Reading | 320 | | | ppendix Characteristic Quantities of the Plasma eferences | 32: | | | uthor Index
bject Index | 33.
33 | | | | |