	List	of symbols		xvii
1.	. INTRODUCTION			1
	1.1.	Introduction	n	1
	1.2.	The concep	t of a beam	1
	1.3.	Some applie	cations of charged-particle beams	3
	1.4.	Notation an	id style	8
	1.5.	Note on bac	ckground physics	10
2.	BEA	M OPTICS	AND FOCUSING SYSTEMS	11
	2.1.	Introduction	n	11
	2.2.	Systems wit	h axial symmetry	13
		2.2.1.	Introduction; Busch's theorem	13
		2.2.2.	The paraxial ray equation	15
		2.2.3.	The formation of images; magnification	25
		2.2.4.	Some general properties of lenses	26
		2.2.5.	Electrostatic lenses	29
		2.2.6.	Magnetic lenses	34
		2.2.7.	Aberrations in axially symmetrical lenses	36
		2.2.8.	Spherical aberration	39
		2.2.9.	Chromatic aberration	41
		2.R.2.	Notes and references	42
	2.3.	Two-dimen	sional systems	43
		2.3.1.	Strip beams	43
		2.3.2.	Strip lenses	44
		2.R.3.	Notes and references	45
	2.4.	System with	two planes of symmetry	45
		2.4.1.	Introduction	45
		2.4.2.	Quadrupole lenses	46
	2.5.	Systems wit	h one plane of symmetry and curved axes	49
		2.5.1.	Introduction	49
		2.5.2.	Edge focusing	50
		2.5.3.	Betatron focusing	51
		2.5.4.	Systems with dispersion	55
	• -	2.5.5.	Deflection and focusing of neutrons	58
	2.6.	Curvilinear	strip beams	59
		2.R.4-6	Notes and references	60
	2.7.	Accelerator	orbit theory	61
		2.7.1.	Introduction	61
		2.7.2.	Alternating-gradient ('strong') focusing	61
		2.7.3.	The existence of closed orbits; resonances	65

	2.7.4.	Momentum compaction and negative mass	67
	2.7.5.	Some effects of magnet imperfections	69
	2.7.6.	Non-linear effects	70
	2.7.7.	Azimuthally varying fixed fields	73
	2.7.8.	Linear coupling between radial and vertical	
		motion	75
	2.7.9.	Betatron with azimuthal magnetic field; an	
		example of strong linear coupling	76
	2.7.10.	Coupling arising from non-linearities; a	
		simple example	78
	2.7.11.	Trajectories, orbits, and focusing; some	
		general observations	80
	2.R.7.	Notes and references	80
2.8.	Focusing in f	ields which vary with time	81
	2.8.1.	Introduction	81
	2.8.2.	Motion of a particle in a uniformly	
		travelling longitudinal wave	82
	2.8.3.	Energy interchange between a wave and a	
		particle beam	84
	2.8.4.	Continuous acceleration of particles in a	
		travelling wave	88
	2.8.5.	Radial and energy excursions of phase	
		oscillations; adiabatic damping	94
	2.8.6.	Concluding remarks on phase focusing and	
		review of some implicit assumptions	96
	2.8.7.	Transverse focusing in time-varying fields:	
		application to cyclotron	97
	2.8.8.	Transverse focusing in linear accelerators	98
	2.8.9.	Alternating-phase focusing and the	
		radiofrequency quadrupole (RFO)	99
	2.R.8.	Notes and references	101
LAM	INAR BEA	MS WITH SELF-FIELDS	102
3.1.	Introduction		102
3.2.	Characteristi	cs of various types of flow	103
	3.2.1.	Introduction	103
	3.2.2.	Cylindrical beam in an infinite magnetic	
		field	104
	3.2.3.	The planar diode	106
	3.2.4.	Limiting current in a cylindrical tube	108
	3.2.5.	Launching a beam from a diode	111
	3.2.6.	Launching a cylindrical beam	114
	3.2.7.	Strip beams	115

Properties of beams with no externally
applied fields

CONTENTS

3.2.8.

		applied fields	116
	3.2.9.	Uniform laminar pinch	121
	3.2.10.	Equilibrium of a uniform cylindrical beam	
		in a uniform magnetic field	122
3.3.	Two-compon	ient beams	127
	3.3.1.	Introduction	127
	3.3.2.	Practical neutralized beams	127
	3.3.3.	Beams with two-component currents	130
	3.3.4.	Robertson's lens	133
3.4.	The paraxial	equation for beams with space-charge in	
	axial magnet	ic fields	134
3.5.	Some further	types of space-charge flow	136
	3.5.1.	Hollow and planar Brillouin beams	136
	3.5.2.	Elliptical beams and elliptical Brillouin flow	139
	3.5.3.	Hollow laminar flows with zero axial	
		velocity	142
	3.5.4.	Laminar flow in a betatron focusing field	143
	3.5.5.	Electrostatically confined flow	144
3.6.	Space-charge	e in periodic systems	144
3.7.	Beams with v	varying current	145
3.8.	Hydrodynam	ic approach to space-charge flow	146
3.R.	Notes and re	ferences	149

NON	I-LAMINAI	R BEAMS WITHOUT COLLISIONS	151
4.1.	Introductio	n	151
4.2.	Hamiltonia	n formalism and Liouville's theorem	151
4.3.	The emittar	nce concept and envelope equation in linear	
	systems		156
	4.3.1.	Definition of emittance; brightness	156
	4.3.2.	Phase-amplitude variables and beam	
		matching	161
	4.3.3.	Transport of beams with finite emittance	165
	4.3.4.	Matched beams in periodic systems	170
	4.3.5.	The distribution of Kapchinskij and	
		Vladimirskij	171
	4.3.6.	Linear self-fields effects; self-constricted	
		beams	173
	4.3.7.	The equations of Kapchinskij and	
		Vladimirskij	174
	4.3.8.	Complete paraxial envelope equation in	
		reduced variables	176
	4.3.9.	Beam transport in a periodic channel	176
	NON 4.1. 4.2. 4.3.	NON-LAMINA 4.1. Introductio 4.2. Hamiltonia 4.3. The emittan systems 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 4.3.7. 4.3.8. 4.3.9.	 NON-LAMINAR BEAMS WITHOUT COLLISIONS 4.1. Introduction 4.2. Hamiltonian formalism and Liouville's theorem 4.3. The emittance concept and envelope equation in linear systems 4.3.1. Definition of emittance; brightness 4.3.2. Phase-amplitude variables and beam matching 4.3.3. Transport of beams with finite emittance 4.3.4. Matched beams in periodic systems 4.3.5. The distribution of Kapchinskij and Vladimirskij 4.3.6. Linear self-fields effects; self-constricted beams 4.3.7. The equations of Kapchinskij and Vladimirskij 4.3.8. Complete paraxial envelope equation in reduced variables 4.3.9. Beam transport in a periodic channel

3.

	4.3.10.	Paraxial scaling	179
	4.3.11.	The longitudinal envelope equation	180
	4.3.12.	Ellipsoidal bunches	181
	4.3.13.	Maximum current in a linear accelerator	182
4.4.	Beams with r	non-linear focusing forces	186
	4.4.1.	Emittance growth, phase-space	
		filamentation	186
	4.4.2.	Root-mean-square and 'effective' emittance	192
	4.4.3.	Emittance and entropy	193
	4.R.1–4.	Notes and references	195
4.5.	Some concep	ts from plasma physics	195
	4.5.1.	Introduction; beams and plasmas	195
	4.5.2.	Pressure, temperature, and emittance	198
4.6.	Beams with a	a velocity distribution which is Maxwellian in	
	the transvers	e direction	200
	4.6.1.	Introduction	200
	4.6.2.	Matched thermal beam in a uniform	
		external linear focusing field	201
	4.6.3.	Self-focused beams; the Bennett pinch	204
	4.6.4.	The planar diode with finite emission	
		velocities	207
	4.6.5.	Thermal beam in a focusing channel with	
		linear external focusing	209
4.7.	Beams with o	other distribution functions, and the	
	matching pro	blem	214
	4.7.1.	Introduction	214
	4.7.2.	The water-bag distribution	215
	4.7.3.	Emittance variation in focusing channels in	
		the presence of non-linearity	218
4.8.	Limitations t	o brightness and smallness of a focal spot	223
	4.8.1.	Introduction	223
	4.8.2.	Limitations to current density in a focal	
		spot arising from thermal velocities at the	
		source	223
	4.8.3.	A general survey of factors which limit spot	
		size	225
	4.R.5–8.	Notes and references	227
4.9.	Ring beams a	and cylindrical current sheets	228
	4.9.1.	Introduction	228
	4.9.2.	Ring beam in a betatron field in the	
		absence of walls	231
	4.9.3.	Ring beam in a betatron field in the	
		presence of walls; Q-shifts	235
	4.9.4.	Cylindrical current sheets	237

	4.9.5.	Adiabatic variation of ring beams and			
		cylindrical current sheets; betatron 2:1			
		condition	241		
	4.9.6.	The high-current modified betatron	243		
	4.9.7.	Crossed-field flows	244		
4.10.	A more gen	eral approach; the Vlasov equation	245		
	4.10.1.	Introduction	245		
	4.10.2.	The determination of self-consistent			
		equilibria	247		
	4.10.3.	Relativistic beam of Hammer and Rostoker	248		
	4.R.9–10.	Notes and references	253		
DEV	MS WITH	CATTERING OR DISSIPATION	255		
5 1	Introduction	A A A A A A A A A A A A A A A A A A A	255		
5.1. 5.2	Multiple sca	ttering of a beam in a background gas or	200		
J.2.	nlasma	tering of a beam in a background gas of	255		
53	Multiple sca	ttering in the presence of focusing	260		
5.3.	Scattering h	etween heam particles in storage rings	262		
5.5	Some prope	rties of a beam with finite temperature	263		
5.5.	The Boersch effect				
5.0.	Electron cooling				
5.8	Beams form	ed from runaway electrons	272		
5.0.	Budker's relativistic self-constricted beam				
5 10	Budget S relativistic sen-constructed beam Rediation effects in electron synchrotrons and storage				
5.10.	rings		277		
5 11	Concluding	remarks	281		
5.11.	concluding				
WAV	VES AND I	NSTABILITIES IN BEAMS	282		
6.1.	Introduction	n	282		
6.2.	Waves in ur	bounded plasma	283		
	6.2.1.	Introduction	283		
	6.2.2.	Waves in cold stationary plasma	283		
	6.2.3.	Plasma surface waves	289		
	6.2.4.	Steady-state properties of a drifting plasma			
		in a stationary neutralizing background	291		
	6.2.5.	Longitudinal waves in a cold drifting			
		plasma	293		
	6.2.6.	Two or more streaming plasmas	297		
	6.2.7.	A continuum of plasma streams; Landau			

damping Notes and references

6.3. Longitudinal waves in beams of finite cross-section

Introduction

5.

6.

6.R.2.

6.3.1.

CONTENTS

xiii

xii

	6.3.2.	Longitudinal waves in a cylindrical beam	2 07
		surrounded by conducting walls	306
	6.3.3.	Cylindrical beam with a close-fitting	2 10
		conducting tube in the presence of ions	310
	6.3.4.	Cylindrical systems with arbitrary wall	
		impedance and with positive or negative	
		mass	315
	6.3.5.	Note on accelerator notation	319
	6.3.6.	Cylindrical systems with continuous	
		velocity distributions and Landau damping	321
	6.3.7.	Cylindrical beam weakly coupled to a	
		propagating structure; normal modes	327
	6.3.8.	Kinetic power theorem for confined flow	332
	6.3.9.	General discussion of beam-wave	
		interaction	335
	6.3.10.	Travelling-wave tube and backward-wave	
		oscillator	336
	6.3.11.	Longitudinal beam-plasma interaction	343
	6.R.3.	Notes and references	346
6.4.	Transverse v	waves	347
	6.4.1.	Introduction	347
	6.4.2.	Filamentary beams, coherent betatron	
		oscillations, and cyclotron waves	350
	6.4.3.	Behaviour of filamentary waves in a	
		resistive environment	352
	6.4.4.	Transverse instability in accelerators	355
	6.4.5.	Transverse interaction between beams and	
		travelling waves: beam 'break-up'	360
	6.4.6.	Transverse two-stream instability	361
1	6.4.7.	The cyclotron maser and the gyrotron	363
	6.R.4.1-7.	Notes and references	366
	6.4.8.	Axially symmetrical transverse wayes in a	000
	011101	laminar paraxial beam	367
	649	Surface waves on non-vortical beams	370
	6 4 10	Wayes on beams with finite vorticity	373
	6.4.11	Unbounded transverse two-stream	010
		interaction in a longitudinal magnetic field	375
	6 4 12	Transverse beam-plasma interactions	378
	6 4 13	Hose instability filamentation and sausage	010
	0.4.13.	instability	380
	6 4 14	Beam stabilization by a laser-ionized	200
	0.7.17.	channel	383
65	Intrinsic stat	bility of particle beams	383
0.5.	6 5 1	Introduction	383
	0.5.1.	muoduon	505

CONTENTS

xv

	6.5.2.	Stability of space-charge-dominated beams	
		in uniform focusing channnels	384
	6.5.3.	Stability of space-charge-dominated beams	
		in periodic focusing channels	386
6.6.	Instabilities a	arising from shear in laminar beams	388
	6.R.4.8–6. 1	Notes and references	393
6.7.	Dynamic phe	enomena in bunched beams	394
	6.7.1.	Introduction	394
	6.7.2.	Wake fields	395
	6.7.3.	Rigid-bunch approximation in orbital	
		machines	398
	6.7.4.	General treatment of bunched-beam	
		instabilities	399
	6.R.7.	Notes and references	401
6.8.	Concluding r	emarks	401

Appendices

Appendix 1: Fields seen by a particle in a rotating frame in a uniform magnetic field	403
Appendix 2: Derivation of the paraxial ray equation from the principle of least action	404
Appendix 3: The effect of non-linearities on the period of a harmonic oscillator	406
Appendix 4: Projections of the Kapchinskij–Vladimirskij distribution	408
Appendix 5: A distribution in a uniform focusing channel with continuously decreasing emittance	410
Appendix 6: Calculation of Landau damping using the results of section 2.8.2 on wave-particle interaction	411
Appendix 7: Coupled-mode theory	414
Appendix 8: The energy associated with transverse waves on a filamentary beam	416
REFERENCES	419
INDEX	441

xiv