TABLE OF CONTENTS

CHAPTER I – IONIC MOBILITIES	
PART ONE	
1. Introduction	1
2. Nature of the Problem of Mobility Measurement	2
3. Summary of the Useful Experimental Methods	8
4. The Erikson Air-Blast Method	10
5. The Bradbury Modification of the	
Tyndall-Grindley Method	13
6. The Four-Gauze Electrical Shutter Method of	
Tyndall and Powell	16
7. The Bradbury-Nielsen Shutter Method	22
8. The Townsend Magnetic-Deflection Method	25
9. The Measurement of Mobilities, with Pulse Techniques	32
PART TWO	
1. Introduction	39
2. The Generic Classical Kinetic Analysis of	
Mobilities, Assuming Solid Elastic Spherical	
Molecules and Ions of Equal Mass	40
3. Forces between Ions and Molecules, and	
Cluster Formation	45
4. The Action of Forces at a Distance, and	
the Small-Ion Concept	51
5. Comparison of Limiting Theories with Experiment	55
6. Complete Ion-Mobility Theories	64
7. The Effect of Temperature on Mobilities	91
8. The Variation of Mobilities with X/p , and	
the Mobilities at High X/p	95
9. Difference in Mobilities of Positive and	
Negative Ions, and Aging	112
10. Mobilities in Mixtures	129
11. Generalized Theory of Motion of Ions through Gases	141
12. Summary of Conclusions on the Nature of	
Gaseous Ions, and Their Behavior	162
13. Mobilities of Large Ions	171
Bibliography to Chapter I	180

xiii

xiv Contents

CHAPTER II — THE DIFFUSION OF CARRIERS IN GASES	
1. Introduction	185
2. Definition of Diffusion Coefficient and Statement	
of Basic Relations	186
3. The Experimental Determination of D for	
Gaseous Ions	190
4. The Ratio between Diffusion Coefficient and Mobility	193
5. The Distribution of Particles in Space and Time	
under Diffusion: Average Velocities of Diffusion	199
6. Ambipolar Diffusion	206
Bibliography to Chapter II	200
Dibriographi) to onaptor it	207
CHAPTER III THE VELOCITIES OF ELECTRONS IN CASES	
Introduction	911
2. The Simple Theory of Flootnen Valagitian and Their	211
2. The Simple Theory of Electron velocities and Their	010
Evaluation in Terms of Experiment	212
3. The Compton Theory of Electron Mobilities	219
4. The Comparison of Theory and Experiment	228
5. Later Developments of the Townsend Techniques	242
6. Electron-Velocity Measurements at Ionizing and	
Sparking Fields	251
Bibliography to Chapter III	267
	ONG
CHAPTER IV — THE DISTRIBUTION OF ENERGY OF ELECTRO	ONS
IN A FIELD IN A GAS	
PART ONE — THEORY AND GENERAL CONSIDERATIONS	
1. Introduction	269
2. Chronological Summary of the Work on	
Electron-Energy Distribution	270
3. General Approach to the Derivation of the	
Druyvesteyn Distribution Law	284
4. Energy Distributions and Related Quantities Deduced	
from Holstein's Theory by D. Barbiere	294
5. Electron Energies from Microwave Analysis	300
6. Data Belating X/p Electron Energies and Associ-	
ated Quantities as Compiled from the Collected	
Studies by the Townsend and Beiley Methods	310
Studies by the Townsend and Daney Methods	019
PART TWO - THE THEORY AND USE OF PROBES	
1. Introduction	320
2. Idealized General Assumptions and Beview	<u> </u>
of the Kinetic-Theory Concente Involved	221
or the Minerio-Theory Concepts Involved	001

3. The Probe Measurement	332
4. The Theory of the Probe	334
5. The Determination of the Distribution Law by	
Probe Studies	342
6. The Boyd Analysis of Sheath Disturbance and	
Ion Temperatures	346
7. The Double-Probe Technique	353
8. Sources of Error in Probe Technique	361
Bibliography to Chapter IV	370
CHAPTER V - THE FORMATION OF NEGATIVE IONS	
1. Introduction	375
2. The Electron-Attachment Theory of J. J. Thomson	378
3. The Method of Bailey	384
4. The Direct Measurement of h	399
5. Observed Attachment Coefficients	425
6. The Attachment Processes and Molecular Structure	445
7. Energy of Negative Ion Formation in O ₂ , and the	
Bradbury-Bloch Theory of Attachment to O2	450
8. The Theory of the Negative Ion Formation in O_2	461
9. The Creation and Appearance of Negative Ions Other	
than Those Formed in Gas by Attachment Processes	466
Bibliography to Chapter V	474
CHAPTER VI - THE RECOMBINATION OF IONS	
1. The Idealized Recombination Relations	477
2. The Weakness of Idealized Theory	480
3. The Extended Treatments of Recombination Processes	482
4. The Measurement of the Coefficient	
OI Recombination	492
5. The Microwave Breakdown Method	503
b. The Mechanism of Recombination, and the Various	
Recombination Processes	511
7. The Observed Recombination Coefficients and	
The Discontine Flants I D Little D	558
0. The Dissociative Electron-ion Recombination Data	563
Dibliography to Chapter VI	594
CHAPTER VII - ELECTRICAL CONDUCTION IN GASES BEI	JOW
IONIZATION BY COLLISION	
1. Introduction	597

Contents

XV

2. The Geometrically Conditioned Saturation Current 598 xvi Contents

3. The Diffusive Effects on Currents in a Gas.	. The
Photoelectric Current of Low Density in Gas	es 601
4. The Space-Charge Limited Current	620
5. The Effect of Positive Ions on the Space-Cha	rge
Limited Electron Current and the Space-	0
Charge Limited Ion Detector	628
6. Currents with Volume Ionization and Ion	
Recombination in a Gas	634
Bibliography to Chapter VII	646
CHAPTER VIII IONIZATION BY COLLISION OF ELI	ECTRONS IN
A GAS — TOWNSEND'S FIRST COEFFICIENT	
1. Introduction	647
2. The Experimental Evaluation of the	
Townsend Coefficients	655
3. The Form of the $\alpha/p-X/p$ Curves, and the	η
Efficiency Function	664
4. Indirect Evaluations of the First Coefficient	671
5. Measured Values of the First Townsend	
Coefficients in Pure Gases	675
6. Discussion of Observations, Including Augme	n-
tation of α by Processes Other than	
Direct-Impact Ionization	693
7. Measurements of the First Coefficient α in Ga	ISCS
Where Electrons Attach to Form Negative I	ons 708
8. Theoretical Evaluation of a/p as a Function of	of X/p 712
9. Ionization by Collision in Nonuniform Fields	727
Bibliography to Chapter VIII	748
CUADTER IX	'NT
1 Introduction	751
2 The Possible Secondary Mechanisms Active	in
Gaseous Breakdown	760
3. Liberation of Electrons at the Cathode by	
Positive Ion Bombardment	764
4. Liberation of Electrons at the Cathode by	
Photons Produced by the Avalanches	795
5. Ionization by Photons in the Gas in Uniform	
Field Geometry	801
6. The Action of Metastable Atoms at the Catho	de 807
7. Ionization by Metastable and Excited	
Atoms in the Gas	809

_{xvii} Contents

8.	The Joint Action of Photoelectric Ionization at the	
	Cathode and Secondary Electron Liberation	
	by Positive Ion Impact on the Cathode	811
9.	Field Emission as a Secondary Mechanism	813
10.	The Secondary Electron Liberation by Charged Insu-	
	lating Dusts; the Malter, or Paetow, Effect	826
11.	The Apparent Second Coefficient Resulting from	
	Space-Charge Distortion Owing to	
	Heavy Current Densities	828
12.	The Values of the Second Coefficients Observed by	
	Townsend's Method, and Their Interpretation	833
13.	The Beginning of Dynamic Studies	852
14.	Fast Oscillographic Analysis of γ_i and $f\theta_g$	
	by von Gugelberg	857
15.	The Oscillographic Studies of Metastable Atoms	
	by J. P. Molnar	867
16.	The Dynamic Study of the Fast Components in	
	Secondary Mechanisms by J. A. Hornbeck	887
17.	The Method of E. J. Lauer and of L. Colli and	
	U. Facchini in Coaxial Cylindrical Geome-	
	try with Low X/p at the Cathode	913
18.	Amin's Fast Oscilloscopic Studies of Point to	
	Plane Corona	938
19,	Derivation of Expressions for Burst-Pulse, Geiger	
	Counter Spread, and Streamer Thresholds	953
Bib	liography to Chapter IX	962
Appendi	x I—Notes Covering Advances, 1955-1959	967
Appendi	x II—Standard Reference Data	987
Index to	Authors	991
Index to	Subjects	1000