

Contents

1.	Intro	duction	1
2.	The	Natural Phenomena Simulated	
	in Re	otating Shallow Water Experiments	5
	2.1	Length, Rotation Velocity, and Lifetime of the Structures	5
	2.2	Large-Scale, Long-Lived Rossby Vortices	
		in the Atmospheres of Giant Planets.	
		The Cyclone-Anticyclone Asymmetry	13
	2.3	Rossby Vortices in the Oceans	19
		2.3.1 Open Sea Vortices	20
		2.3.2 Rings of the Gulf Stream and the Kuroshio Current	21
		2.3.3 Internal Thermoclinic Vortices (Lenses)	24
	2.4	Spiral Structures in Galaxies	26
3.	Com	mon Features	
	of th	ne Simulated Natural Phenomena	31
	3.1	Quasi-Two-Dimensionality	31
	3.2	Structure Generation by Flows with Horizontal Velocity Shear	32
	3.3	Horizontal Dimensions	
		Exceeding the Characteristic Rossby Radius	33
4.	Phys	sical Prerequisites of the Laboratory	
	Sim	ulation of Large-Scale Rossby Vortices	
	and	Galactic Spiral Structures	35
	4.1	The Analogy Between Two-Dimensional Gas Dynamics	
		and the Dynamics of Shallow Water	35
		4.1.1 Theory	35
		4.1.2 Experiment	37
	4.2	Principal Similarity Parameters in Nature and Experiment	38
5.	Phy	sical Basis for the Experimental Investigation	
	of R	Rossby Solitons and Laboratory Simulation	
	of I	Orift Vortices and Solitons in Magnetized Plasma	43
	5.1	Two-Dimensional Motion of Charged Particles in	
		Magnetized Plasma and Particles in Rotating Shallow Water	43

		Contents	IX	
	9.3	Collisions of Rossby Vortices	139	
	9.4	Cyclone-Anticyclone Asymmetry	139	
	9.5	Quasi-Two-Dimensionality of Rossby Vortices.	207	
		The Non-Principal Role of Viscosity	147	
	9.6	Vortex-Wave Dualism	149	
	9.7	Comparison between Experiment and Theory	150	
10.	Solito	onic Model of Natural Vortices	155	
	10.1	Solitonic Model of the JGRS and Other Large-Scale,		
		Long-Lived Vortices in Planetary Atmospheres	155	
	10.2	An Alternative Model of the JGRS:		
		Numerical Calculation	159	
	10.3	Solitonic Vortices in the Oceans	161	
11.	Dipolar Rossby Vortices			
		Preliminary Experiments	165	
		Dipolar Vortex Decay for Moderate Liquid Depths		
		Solitonic Properties of Dipolar Vortices	100	
		for Large Liquid Depths	167	
12.	Shall	ow-Water Simulation of Drift Vortices		
		Solitons in Magnetized Plasma	177	
		Prediction of Drift Soliton Properties	1,,	
	12.1	Based on Shallow-Water Simulation.		
		Drawbacks of the "Purely Wave" Concept	177	
	12 2	Vortical Mechanism for the Enhanced Diffusion of Plasma	1 //	
	12,2	Across a Strong Magnetic Field	180	
12	Conc		105	
13.	Conc	clusion	103	
S.	Supp	lements	189	
Ref	References			
Sub	Subject Index			