CONTENTS

Cha	pter 1 Introductory Ideas	1
1.1	A Simply Stated Problem, 1	
1.2	Linear Spaces, 2	
1.3	Normed Linear Spaces, 9	
1.4	The Space $L_2[a,b]$, 11	
1.5	Basis for a Linear Space, 15	
1.6	Approximating from Finite Dimensional Subspaces, 19	
Cha	pter 2 Lagrangian Interpolates	24
2.1	Introduction, 24	
2.2	On Polynomials, 26	
2.3	Lagrange Interpolation, 29	
2.4	Computation and Choice of Basis, 32	
2.5	Error Estimates for Lagrange Interpolates, 35	
2.6	Best Approximation and Extended Error Estimates, 40	
2.7	Piecewise Lagrange Interpolation, 44	
Cha	pter 3 Hermitian Interpolates	52
3.1	Introduction, 52	
3.2	Computation of Piecewise Cubic Hermites, 56	
3.3	A Simple Application, 60	
3.4	Hermite Interpolation, 63	
3.5	Piecewise Hermite Interpolation, 68	
3.6	Computation of Piecewise Hermite Polynomials, 70	
3.7	The Hermite-Birkhoff Interpolation Problem, 74	
Cha	pter 4 Polynomial Splines and Generalizations	77
4.1	Introduction, 77	
4.2	Cubic Splines, 78	
4.3	Derivation of the B Splines, 87	

	CONTENTS

x

4.4 4.5	Splines and Ordinary Differential Equations, 94 Error Analysis, 107	
Chaj	pter 5 Approximating Functions of Several Variables	116
5.1	Surface Fitting, 116	
5.2	Approximates on a Rectangular Grid, 118	
5.3	Tensor Products, 135	
5.4	Approximates on Triangular Grids, 137	
5.5	Automatic Mesh Generation and Isoparametric Transforms, 155	
5.6	Blended Interpolates and Surface Approximation, 168	
Chap	ter 6 Fundamentals for Variational Methods	174
6.1	Variational Methods, 174	
6.2	Linear Operators, 177	
6.3	Inner Product Spaces, 182	
6.4	Norms, Convergence, and Completeness, 187	
	Equivalent Norms, 190	
	Best Approximations, 192	
6.7	Least Squares Fits, 197	
Chap	oter 7 The Finite Element Method	201
7.1	Introduction, 201	
7.2	A Simple Application, 205	
7.3	An Elementary Error Analysis, 211	
7.4	Lowering the Smoothness Requirements—Choice	
	of Linear Space, 217	
7.5	Some Practical Considerations, 225	
7.6	Applications to the Dirichlet Problem, 227	
7.7	The Mixed Boundary Value Problem, 240	
7.8	The Neumann Problem, 245	
7.9	Coerciveness and Rates of Convergence, 251	
7.10		
7.11	_	
7.12		
- 10	Differential Equations, 262	
7.13	Galerkin Methods and Least Squares Methods, 267	
Chap	oter 8 The Method of Collocation	273
8.1	Introduction, 273	
8.2	A Simple Special Case: Existence Via Matrix Analysis, 279	

CONTENTS	xi

8.3 Green's Functions, 286

Inde	NY	321
Glos	ssary of Symbols	319
8.8	A Connection Between Collocation and Galerkin Methods, 314	
8.7	Orthogonal Collocation, 304	
8.6	Collocation and Partial Differential Equations, 298	
8.5	Error Analyses Via Green's Functions, 296	
8.4	Collocation Existence Via Green's Functions, 289	

321