目 次

"材料テクノロジー"刊行にあたって

は	しが	**	
1.	は	じめに	13
	1.1	はじめに ―― 13	
	1.2	超伝導材料とは ——— 14	
	1.3	超伝導材料の開発課題 ——— 15	
	1.4	超伝導材料開発の歴史19	
		1章参考文献 ——— 27	
2.	超位	宝導の基礎知識	29
	2.1	超伝導現象とその基本的特性 —— 29	
		2.1.1 完全導電性,永久電流,臨界温度,相転位 ——— 29	
		2.1.2 完全反磁性(マイスナー効果) ——— 30	
		2.1.3 臨界磁界と臨界電流密度 ——— 30	
		2.1.4 第一種超伝導体と第二種超伝導体 ——— 31	
		2.1.5 磁束量子化 ——— <i>32</i>	
		2.1.6 エネルギーギャップ, 比熱, 電磁波の吸収 ——— 32	
		2.1.7 同位元素効果 ——— 33	
		2.1.8 ジョセフソン効果 34	
		2.1.9 熱伝導,熱電効果 ——— 35	
		2.1.10 中間状態 ——— 36	
	2.2	基本的特性の現象論 —— 37	
		2.2.1 超伝導の電磁気学37	
		2.2.2 超伝導の熱力学 41	
	2.3	超伝導の基礎理論 —— 43	
		2.3.1 BCS 理論 ——— <i>43</i>	

	2.3.2 Ginzburg-Landau-Abricosov-Gorkov (GLAG) 理論 ——— 57
	2.3.3 マイスナー効果67
	2.3.4 磁束の量子化 —— 69
	2.3.5 トンネル効果とエネルギーギャップ 70
	2.3.6 ジョセフソン効果 ――― 73
	2.3.7 完全導電性,永久電流 ——— 77
	2.3.8 T _c の計算法 ——— 78
2.4	高 T _c 超伝導体の可能性 ——— 85
	2.4.1 フォノン機構超伝導体の極限追求 85
	2.4.2 新機構超伝導体 ——— 88
	2.4.3 T _c に影響する効果 ——— 92
2.5	おわりに――94
	2章引用文献および参考文献 ——95
3. 超伝	
3. 1	元素超伝導体——97
3. 2	合金超伝導体 ——— 114
	3. 2. 1 Pb-Bi 系 ———————————————————————————————————
	3. 2. 2 Nb-Ti 系 ——— 118
	3.2.3 Nb-Zr 系 ——— 120
	3. 2. 4 Mo-Re 系 ——— <i>120</i>
	3.2.5 アモルファス超伝導材料 120
3.3	化合物超伝導体 ——— 123
	3.3.1 B1型化合物超伝導体———123
	3.3.2 A 15 型化合物超伝導体——— 129
	3.3.3 ラーベス相および σ相,χ相化合物超伝導体 144
	3.3.4 水素化物超伝導体——— 147
	3.3.5 シェブレル相 (MMo ₆ X ₈) 超伝導体——— <i>149</i>
	3.3.6 磁性超伝導材料———152
	3.3.7 重い電子系の超伝導材料154
	3.3.8 酸化物超伝導材料—その1———156
	3.3.9 酸化物超伝導材料—その 2 (M _x La _{2-x} CuO _{4-y} 系)——— <i>159</i>
	3.3.10 遷移金属カルコゲナイド超伝導体——— <i>164</i>
	3.3.11 有機超伝導材料——— 167
8	目 次

		3 章引用文献および参考文献 ―― 171	
1.	超位		—— <i>17</i> 9
	4.1	材料設計対象と材料設計プロセス —— 179	
	4.2	高 T _c 超伝導材料の設計方向 ——— 182	
	4.3	フォノン機構の極限追求 ——— 184	
		4.3.1 高 T _c 超伝導材料の経験則 ——— 184	
	4.4	T _c の評価 188	
	4.5	高 T _c 超伝導体の設計 ——— 191	
		4.5.1 既知物質の拡張 191	
		4.5.2 新種の超伝導材料の設計 ——— 203	
		4.5.3 作製法の留意点205	
	4.6	新機構超伝導体の設計207	
		4.6.1 電荷密度波(CDW)による超伝導体 —— 208	
		4.6.2 空間分離型電子-正孔対(エキシトン)超伝導 210	
		4.6.3 電子対形成による超伝導 ——— 211 4.6.4 む す び ——— 219	
	17	高 H _{co} 材料の開発 219	
		GEPSC (ジプシー) 計画 ——— 221	
	4.0	4章引用文献および参考文献 ——— 223	
		4 早月用又献わより参考又献 ——— 225	
5.	超位	伝導薄膜および超伝導体表面 ────────────────────────────────────	227
	5. 1	超伝導薄膜の重要性227	
	5.2	超伝導体薄膜作製法 ——— 229	
		5.2.1 スパッタリング法229	
		5.2.2 蒸 着 法——232	
		5.2.3 C V D 法——— 234	
	5.3	元素および合金薄膜 ——— 235	
		5.3.1 Nb 薄膜 ——— <i>235</i>	
		5.3.2 Pb 合金薄膜 ——— 238	
	5.4	B1型化合物薄膜 —— 238	

5.4.1 NbN 薄膜 —— 239 5.4.2 MoN 薄膜 —— 242

	5.5	A 15 型超伝導体薄膜 ——— 243	
		5.5.1 Nb ₃ Ge 薄膜 ——— 243	
		5.5.2 Nb ₃ Si 薄膜 ——— 251	
		5.5.3 Nb ₃ A1 薄膜 ——— <i>253</i>	
		5.5.4 Nb ₃ Sn 薄膜 ——— 254	
	5.6	三元系化合物超伝導体薄膜———255	
		5. 6. 1 シェブレル化合物薄膜 255	
		5. 6. 2 BaPb _{1-x} Bi _x O ₃ 薄膜 ——— 256	
	5.7	多層膜超伝導体 ——— 257	
	5.8	超伝導体表面の特性 —— 259	
		5.8.1 超伝導体表面の意義 ——— 259	
		5.8.2 Pb 系ジョセフソン素子のバリア層の評価 261	
		5.8.3 Nb 表面および Nb/バリア表面の評価 ——— 263	
		5.8.4 A 15 型超伝導体の表面酸化 ——— <i>265</i>	
		5.8.5 NbN の表面酸化 ——— 267	
		5 章引用文献および参考文献 ——— 268	
6.	超信	云導材料の製造法	—— 273
	6.1	合金線材の製法 273	
	6.2	化合物系超伝導線材の製法 —— 275	
		6.2.1 Nb ₃ Sn, V ₃ Ga 実用超伝導線材の製法 ——— 275	
		6.2.2 Nb ₃ Sn, V ₃ Ga の新しい線材化技術 ——— 281	
		6.2.3 新しい超伝導線材の開発—— 284	
	6.3	超伝導線材の臨界電流密度 —— 289	
		6.3.1 磁束の侵入と臨界電流289	
		6.3.2 ピンニングの機構 —— 291	
		6.3.3 組織と臨界電流 ——— 293	
	6.4	超伝導線材の磁気不安定性296	
	6.5	超伝導線材の交流損失 —— 299	
	6.6	超伝導線材の応力効果 —— 301	
	6.7	実用導体の構造 —— 304	
		6 章引用文献および参考文献 305	

10 目 次

超伝導の応用		
7.1	物性研究への応用 —— 310	
	7.1.1 研究用強磁界超伝導磁石 ——— 310	
	7.1.2 NMR 分析装置 ——— 311	
	7.1.3 電子顕微鏡 ——— 312	
	7.1.4 高エネルギー物理学への応用 ——— <i>313</i>	
7.2	エネルギー技術への応用 ——— 316	
	7.2.1 電気回転機械 ——— 316	
	7.2.2 エネルギー貯蔵 319	
	7.2.3 核融合炉——320	
7.3	輸送機関への応用 324	
	7.3.1 磁気浮上列車 ——— 324	
	7.3.2 船舶推進——325	
7.4	医療への応用 —— 327	
	7.4.1 NMR-CT (MRI) ——— 327	
	7.4.2 π中間子照射治療装置 ——— 329	
7.5	産業機器への応用 330	
	7.5.1 磁 気 分 離 ——— 330	
	7.5.2 単結晶育成装置および LSI 用転写装置 ——— 330	
7.6	その他の利用 —— 331	
	7 章参考文献 ——— 332	
今往	多の展望	333
8.1	超伝導材料開発の今後の展望 333	
	8.1.1 実用化技術の開発 333	
	8.1.2 新物質の探究 —— 335	
8.2	超伝導に関連した資源問題 —— 337	
	8.2.1 レアメタル 337	
	8.2.2 ヘリウム資源 ——— <i>338</i>	
8.3	超伝導関連技術 —— 339	
	8 章参考文献 ——— 341	
索	引343	

7.

8.