Contents

PREFACE	vii
Chapter 1 INTRODUCTION	1
Chapter 2 PARTICLE ORBIT THEORY 2-1 Introduction, 10; 2-2 Constant uniform magnetic field, 2-3 Constant, uniform electric and magnetic fields, 13; 2-4 Inho geneous magnetic field, 14; 2-5 Constant, non-electromagnetic for 17; 2-6 Time-varying magnetic field, 18; 2-7 Invariance of μ is inhomogeneous field, 19; 2-8 Magnetic mirrors, 20; 2-9 Ea radiation belts, 22; 2-10 Another adiabatic invariant, 24; 2-11 S consequences of J as an invariant, 25; 2-12 Motion in a m chromatic, plane wave, 26; Summary, 29; Problems, 30	10 11; omo- orces, n an arth's Some
Chapter 3 MACROSCOPIC EQUATIONS 3-1 Introduction, 33; 3-2 Fluid model of a plasma, 33; 3-3 moment equations, 35; 3-4 Alternative form of the moment e tions, 43; 3-5 Hydromagnetic equations, 45; 3-6 Criteria for ap ability of a fluid description, 51; Summary, 54; Problems, 55	33 The equa- oplic-
Chapter 4 HYDROMAGNETICS 4–1 Introduction, 58; 4–2 Kinematics, 58; 4–3 Static problems 4–4 Force-free fields, 70; 4–5 Hydromagnetic stability, 71; Interchange instabilities, 80; 4–7 Alfvén waves, 83; Summary Problems, 88	58 , 64; 4–6 , 86;
Chapter 5 HYDROMAGNETIC FLOWS 5-1 Introduction, 92; 5-2 Hydromagnetic Navier-Stokes equa 92; 5-3 Hartmann flow, 93; 5-4 Couette flow, 99; 5-5 Flow stab 101; 5-6 Parallel flows, 103; 5-7 Transverse flows, 104; 5-8 Pla propulsion, 106; 5-9 MHD generators, 108; Summary, 111; H lems, 112	92 tion, oility, asma Prob-
Chapter 6 SHOCK WAVES IN PLASMAS 6-1 Introduction, 113; 6-2 Hydromagnetic shock equations, 6-3 Shock propagation parallel to the magnetic field, 120; 6-4 S propagation perpendicular to the magnetic field, 123; 6-5 S thickness, 124; 6-6 Collisionless shocks, 130; 6-7 Experiments, Summary, 136; Problems, 137	113 115; hock hock 131;

.

139

Chapter 7 WAVES IN COLD PLASMAS 7-1 Introduction, 139; 7-2 Some general wave concepts, 140; 7-3 Wayes in cold plasmas, 145; 7-4 Experimental results for low-frequency waves, 153; 7-5 Further wave concepts, 160; 7-6 General theory of waves in cold plasmas, 161; 7-7 The CMA diagram, 166; 7-8 Further experimental work, 174; Summary, 178; Problems, 180

Chapter 8 WAVES IN WARM PLASMAS

184

8-1 Introduction, 184; 8-2 Magnetodynamic waves, 185; 8-3 Longitudinal waves in warm plasmas, 191; 8-4 Ion acoustic waves and ion plasma oscillations, 194; 8-5 Landau damping of longitudinal plasma waves, 195; 8-6 Experimental results for waves in warm plasmas, 197; 8-7 General dispersion relation, 205; Summary, 209; Problems, 209

Chapter 9 PLASMA RADIATION

211 9-1 Introduction, 211; 9-2 Summary of electrodynamic results, 212; 9-3 Angular distribution from an accelerated charge, 216; 9-4 Frequency spectrum of radiation from an accelerated charge, 218; 9-5 Cyclotron radiation by an electron, 219; 9-6 Bremsstrahlung from a plasma, 230; 9-7 Radiation from plasma oscillations, 235; 9-8 Scattering of radiation in plasmas, 238; 9-9 Transport of radiation in a plasma, 247; 9–10 Black-body radiation from a plasma, 251; Summary, 253; Problems, 255

Chapter 10 KINETIC THEORY

261

10–1 Introduction, 261; 10–2 Equations for the distribution functions, 262; 10-3 Near-equilibrium plasmas, 267; 10-4 Vlasov equation, 268; 10-5 Landau damping, 269; 10-6 Streaming instabilities, 274; 10-7 Boltzmann equation, 277; 10-8 Properties of the Boltzmann equation, 280; 10-9 Fokker-Planck equation, 284; 10-10 Relaxation times, 289; 10-11 Transport coefficients, 293; 10-12 Equilibrium pair correlation function, 299; 10-13 Derivation of the Landau equation, 301; Summary, 305; Problems, 308

APPENDICES 1 Tensors and dyadics, 312; 2 Bessel functions, 315; 3 Pla diagnostics, 317; 4 Units, 321; 5 Some useful physical constants	312 asma , 328
Bibliography	329
References	332
INDEX OF SYMBOLS	336
INDEX	343

vi