目 次

11.	古	典 流 体335
	A.	は じ め に335
	B.	熱力学と動径分布関数 ·····336
		1. 縮約された確率密度 ·······336
		2. 熱力学と縮約された確率密度 · · · · · · · · · · · · · · · · · · 338
	C.	状態方程式のビリアル展開341
		1. クラスター関数のビリアル展開342
		2. 2次のビリアル係数348
		3. 3次のビリアル係数352
		4. 高次のビリアル係数356
	D.	縮約された確率密度のビリアル展開 ・・・・・・・・・・358
	E.	オルンシュタイン-ゼルニケ方程式と近似法362
	F.	重ね合せの原理 ・・・・・・・・・・・・・・・・・366
	G.	高密な流体の実験結果 ・・・・・・・・・・・・・・・369
	H.	摂 動 理 論 ······372
	I.	ビリアル係数の量子補正 ······373
		1. 理想量子気体
		2. 相互作用のある量子気体 ・・・・・・・・・375
12.	量	子 流 体381
	A.	は じ め に
	B.	通常ボーズ流体およびフェルミ流体のグランドポテンシャル ・・・・・・・・・・382
		1. グランドポテンシャルのキュミュラント展開 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		2. ウィックの定理 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		3. ダイアグラム387

	C.	直接相互作用および交換相互作用 ··············395
	D.	電子気体397
		1. 有効ハミルトニアン397
		2. 分極ダイアグラム402
		3. 古典電子気体 · · · · · · · · 404
		4. 絶対零度極限406
	E.	通常ボーズ流体およびフェルミ流体のプロパゲータ · · · · · · · · · · · · · 408
		1. 物 理 的 説 明 · · · · · · · · · · · · · · · · · ·
		2. ダイアグラム展開411
	F.	ダイソン方程式と自己エネルギーの構造414
	G.	弱く結合したフェルミ流体の低温での励起417
	H.	絶対零度での弱く結合した凝縮ボーズ流体 ·····421
		1. 厳密なプロパゲータ421
		2. ダイソン方程式425
		3. 化学ポテンシャル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		4. 励 起428
13.	初争	等輸送理論 ·······
	A.	はじめに432
	В.	初等分子運動論 · · · · · · · · · · · · · · · · · · ·
		1. 平均自由行程 · · · · · · · · · · · · · · · · · · ·
		2. 衝 突 頻 度434
		3. 自己拡散436
		4. 粘性係数と熱伝導度438
		5. 反 応 速 度440
	C.	ボルツマン方程式444
		1. 2 体 散 乱 · · · · · · · · · · · · · · · · · ·
		2. ボルツマン方程式の導出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		3. ボルツマンの H 定理 · · · · · · · · · 448
	D.	2 成分系に対する線形化されたボルツマン方程式449
	E.	自己拡散係数 · · · · · · · · · 453
		1. 線形化された流体力学方程式 ····································
		 ローレンツ-ボルツマン方程式の固有振動数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	F.	粘性係数と熱伝導度 · · · · · · · · · · · · · · · · · · ·
		1. 流体力学方程式の正規モード振動数

		2. ボルツマン方程式の固有振動数462
	G.	ソーニン多項式 ·········465
	H.	量子輸送方程式 · · · · · · · 468
		1. 基本的モデル468
		2. Bogoliubov の仮定······470
		3. 輸送方程式472
		4. 空間的に一様な系 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
14.	流位	\$力学とオンサーガーの関係式 ···············480
	A.	は じ め に480
	B.	オンサーガーの関係式 ······480
		1. 時間依存相関関数と微視的可逆性481
		2. 揺らぎの減衰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	C.	磁場がある場合のオンサーガーの関係式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・484
	D.	力学熱効果と熱分子圧効果 ······486
		1. 力学熱効果 ······488
		2. 熱分子圧効果 ······489
	E.	エントロピー生成最小の原理 ・・・・・・・・・・・・・・・490
	F.	1 成分正常等方流体 ······494
		1. 質量保存: 連続の式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		2. 運動量のつり合い方程式 · · · · · · · · · · · · · · · · · · ·
		3. エネルギーとエントロピーのつり合い方程式 · · · · · · · · · · · · · 495
	G.	化学反応を伴う多成分流体・・・・・・・・・・・・・・・・498
	H.	超流動流体力学 · · · · · · · · 503
		1. 流体力学方程式 · · · · · · · 503
		2. 第 1 音 波
		3. 第 2 音 波
15.	揺動	b-散逸定理 ······513
	A.	はじめに513
	B.	ウィーナー-ヒンチンの定理 ······514
		1. 時間に依存する相関行列の性質 ・・・・・・・・・514
		2. スペクトル密度行列 ・・・・・・・・・・・514
		3. スペクトル密度行列と磁場516

	C. 因果律と応答行列 ·······					
	D.	摇動-散逸定理·····521				
	E.	パヮ-吸収・・・・・・・522				
		1. デルタ関数の力 ・・・・・・・・・523				
		2. 振動するカ523				
	F.	調和的な力をうけたブラウン粒子524				
	G.	光 散 乱				
		1. 光散乱の現象論・・・・・・・・・・・・・・・・・・・・・・・527				
		2. 散乱光の強さ				
		3. 散乱強度に対する流体力学的表式 · · · · · · · · · · · · · · · · · · ·				
	H.	 				
	流体力学と線形応答理論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
	射影演算子による相関関数541					
	K.	流体力学方程式の一般的定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
		1. 流体力学方程式の一般的な形 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
		2. 流体力学的モード:保存量 · · · · · · · · · · · · · · · · · · ·				
		3. 流体力学的モード: 対称性の破れ ····································				
	L.	強磁性の系・・・・・・・550				
	M.	超流動体における対称性の破れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
16.	巨田	5間のべき乗的ふるまい ‥‥‥‥‥‥‥‥‥‥				
10.	Жн					
	A.	は じ め に559				
	В.	長時間のべき乗的ふるまいの流体力学的起源 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
	C.	速度自己相関関数のビリアル展開				
	D.	ビリアル係数に対する微視的表式				
		1. 2 体衝突展開				
		2. 自己エネルギーのリング近似				
		3. 2体衝突演算子 ······574				
	E.	長時間のべき乗的ふるまいの微視的表式				
	F.	流体力学について581				
17		平衡 相 転移·······584				
17.	非 3	т 偰 怕 転 侈··································				
	Α.	はじめに				
	В.	平衡から遠く離れた系の熱力学的安定性規準				

		1.	エントロピー生成 ・・・・・・・585
		2.	非線形化学反応 · · · · · · · · 587
	C.	シ:	ュレーグル・モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・592
	D.	ブ	ラッセル模型 ・・・・・・・・・・594
		1.	実数の ω(k) ······598
		2.	複素数の ω(k) ······599
	E.	P	トカ-ヴォルテラ・モデル・・・・・・・・・・・・・・・・・601
	F.	べっ	ナール不安定性 ···········603
付		録…	615
	Α.) 合い方程式 · · · · · · · · · 615
		1.	一般的流体の流れ · · · · · · · 615
		2.	
	В.		本量子系に対する表示 · · · · · · 619
		1.	位置表示と運動量演算子619
		2.	N 体シュレーディンガー方程式: 一般形 · · · · · · · · · 621
		3.	相互作用をしていない粒子 ······623
		4.	ボゾンに対する数表示 ・・・・・・・・・・・・・・・626
		5.	フェルミオンに対する数表示 · · · · · · · 629
		6.	場の演算子・・・・・・・・631
		7.	式 (B. 74) の証明 ·······633
		8.	式 (B. 92) の証明 ············634
	C.	等ブ	5系: キュリーの原理 ······636
		1.	テンソルの数学的性質 ······636
		2.	等方系に対する現象論的係数 ・・・・・・・・・・・・・・638
	D.	非級	泉形方程式の解と安定性 ······639
		1.	線形安定性理論 · · · · · · · · 639
		2.	リミットサイクル ・・・・・・・・・・・・・・・・・・・・・・・・642
		3.	リアプノフ関数と広域的安定性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
索		引 .	