新·炭素材料入門 目 次

第1章 炭素材料の基礎

1.1	炭素原子の結合と炭素の同素体 ······ 3
	1. 炭素原子の結合様式, 2. 炭素の結合様式と同素体, 3. 高圧, 高温下での炭素の構造
1.2	炭素の構造 ・・・・・・・・・・・・・・・・・・・・・・・・ 8
	1. はじめに、2. 炭素材料の多様性をもたらす因子、3. 炭素材料の構造パラメータと評価法、 4. 炭素材料の構造、5. おわりに
1.3	炭素の生成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1. 炭素材料調製の標的と段階, 2. 炭素質液晶 "メソフェーズ"の物性と構造, 3. 液相炭素化機構, 4. 炭素化反応の制御と設計, 5. メソフェーズ制御による炭素体調製
1.4	炭素材料の黒鉛化 ・・・・・・・・・・・・・・・・・・・・・・・・ 24
	1. はじめに, 2. 黒鉛化に伴う構造変化, 3. 黒鉛化を促進する因子, 4. 黒鉛化に対する組織の影響, 5. おわりに
1.5	炭素材料の電子的性質 ・・・・・・・・・・・・・・・・・・・・・・・・32
	1. はじめに, 2. 黒鉛の電子構造, 3. 電気伝導, 4. 電流磁気効果, 5. 黒鉛および炭素材料の電子的性質, 6. おわりに
1.6	炭素の熱的性質 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1. はじめに, 2. 熱容量, 3. 熱力学的な性質, 4. 炭素の熱伝導, 5. 熱膨張係数, 6. 耐熱衝撃性, 7. まとめ
1.7	炭素の機械的性質 ・・・・・・・・・・・・・・・・・・・・・・・・・ 53
	1. はじめに、2. 応力とひずみ、3. 弾性変形の原子論、4. 変形、5. 強度と破壊靭性、6. おわりに
1.8	炭素の化学的性質 ・・・・・・・・・・・・・・・・・・・・・・・・・・ 62
	1. はじめに, 2. ガスによるガス化反応, 3. 炭素の液相および固相での反応, 4. おわりに
1.9	炭素の表面特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1. はじめに, 2. 表面化学構造, 3. 濡れ性, 4. 吸着, 5. トライボロジー, 6. 触媒特性

第2章 いろいろな炭素材料

2.1	炭素の原料 ・・・・・・・・・・・・・・・・・・・・・・・・・・ 81
	1. はじめに, 2. 炭素材料の賦形の概念, 3. コークス, 4. ピッチ, 5. ピッチのキャラクタリゼーション, 6. メソフェーズピッチ, 7. その他, 8. おわりに
2.2	炭素繊維 ······ 91
	1. はじめに, 2. 製造法, 3. 構造, 4. 特性, 5. おわりに
2.3	炭素繊維複合材料 · · · · · · · · · 99
	1. はじめに、2. 炭素繊維強化プラスチック、3. 炭素繊維強化炭素、4. おわりに
2.4	人造黒鉛材料105
	1. はじめに, 2. 種類と特徴, 3. 製造方法, 4. 構造と特性, 5. 用途, 6. おわりに
2.5	硬質炭素材・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1. はじめに, 2. 高密度等方性炭素材, 3. ガラス状炭素, 4. おわりに
2.6	高配向性黒鉛材料 · · · · · · · · · · · · · · · · 117
	1. はじめに、2. 高配向性黒鉛の構造とその評価、3. 高配向性黒鉛材料の製造とその応用、4. おわりに
2.7	多孔質炭素材 · · · · · · · · 123
	1. はじめに、2. 多孔質炭素構造、3. 細孔構造、4. 細孔構造評価法、5. おわりに
2.8	カーボンブラック ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1. はじめに、2. 製造方法、3. 生成機構、4. 品種と分類、5. 基本的特性、6. 用途、7. おわりに
2.9	フラーレンズ ・・・・・・・・・・・・・136
	1. フラーレンおよびその関連物質の発見と合成法, 2. 固相フラーレンの結晶構造と物性, 3. アルカリおよびアルカリ土類 C_{60} 化合物, 4. ナノチューブとナノポリヘドロン,
	5. 金属原子内包フラーレン,6. 金属・炭化物入りナノカプセル,7. 炭層ナノチューブ
2.10	ダイヤモンドとダイヤモンド状炭素 ・・・・・・・・・・・・・・・・・・・・・・・・・ 143
	1. はじめに, 2. ダイヤモンド, 3. ダイヤモンド状炭素膜, 4. 用途, 5. おわりに
2.11	炭素-無機複合材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・ 150
	1. はじめに、2. 炭素-無機複合材料における複合効果、3. 炭素繊維強化複合材料、 4. 炭素-セラミックス複合材料、5. おわりに
2.12	黒鉛層間化合物 · · · · · · · · · · · · · · · · · · ·
	1. はじめに, 2. 黒鉛層間化合物の分類, 3. 黒鉛層間化合物の構造, 4. 黒鉛層間化合物の合成, 5. 黒鉛層間化合物の性質, 6. おわりに

第3章 炭素材料の応用

3.1	炭素工業の現状165
	1. 概要, 2. 生産量の推移, 3. 品種構成など, 4. 企業の経営環境変化
3.2	製鉄分野への応用 ・・・・・・・・・・・・・・・・・171
	1. はじめに, 2. コークスの生産概況, 3. 製鉄用原料炭の品質, 4. コークスの品質, 5. コークス製造技術
3.3	製鋼分野への応用 ・・・・・・・・・・・・・・・・177
	1. はじめに、2. 使われ方と必要とされる性質、3. 製鋼用黒鉛電極の特性、4. 今後の展望
3.4	原子力分野への応用 ・・・・・・・・・・・・182
	1. はじめに, 2. 原子炉への応用, 3. 核融合炉への応用, 4. 今後の展望
3.5	航空宇宙分野への応用 ・・・・・・・・・・189
	1. まえがき, 2. 宇宙往還機用C/C材に対する要求条件, 3. 耐酸化C/C材の製法と特性, 4. 耐酸化C/C材の評価, 5. おわりに
3.6	電気機械分野への応用 ・・・・・・・・・・・195
	1. はじめに、2. ブラシ、3. 炭素質パンターグラフ用すり板、4. 電気接点、5. おわりに
3.7	電子機器分野への応用 ・・・・・・・・・・・・・・・・・・・・ 202
	1. まえがき、2. 電子部品におけるカーボン材料、3. カーボン分散系導電性プラスチック、4. カーボン分散系導電性プラスチックの今後の展開、5. おわりに
3.8	電池分野への応用 ・・・・・・・・・・・・・・・・・・・・ 206
	1. はじめに, 2. 一次電池への利用, 3. 二次電池への利用, 4. 電力貯蔵用電池用炭素材料, 5. 燃料電池, 6. スーパーキャパシタ, 7. おわりに
3.9	生物・生体分野への応用 ・・・・・・・・・・・・・・・・ 214
	 はじめに、2. 炭素と細胞とのかかわり、3. 炭素人工臓器の現状、4. 炭素人工歯根材、 人工肝臓と人工腎臓、6. 炭素と細菌とのかかわり、7. 医療技術支援用炭素材、 これからのカーボンバイオマテリアル
3.10	土木・建築分野への応用 ・・・・・・・・・・・・・・・・・ 224
	1. はじめに, 2. 短繊維CFRC, 3. 連続繊維CFRC, 4. おわりに
3.11	環境工学分野への応用 ・・・・・・・・・・・・・・・・・・・・・ 230
	1. はじめに、2. 大気環境分野、3. 水質環境分野、4. おわりに