Contents

I.	Unifor	rm Current Density Solenoids	1	
	1.1 Field Current Relations			
	1.2 P	1.2 Power Relations		
	1.3 F	Resistance and Impedance Matching	8	
	1.4 V	Veight and Volume of Coils	10	
	1.5 C	Choice of Conductor: Copper Versus		
	A	luminum	10	
	1.6 N	Ioncircular Coils	12	
	1.6.1	Power and Volume Considerations of		
		Noncircular Coils	13	
	1.6.2	Forces in Noncircular Coils	14	
II.	Non-l	Iniform Current Density Solenoids	15	
	2.1 C	Composite Windings	15	
	2.1.1	Concentric Coils	15	
	2.1.2	Axial Variation	18	
	2.2 T	he Optimum Distribution	20	
	2.3 E	Pisk Solenoids	23	
	2.3.1	Single Thickness Bitter Plate		
		Distribution	24	
	2.3.2	Variable Thickness Plates	27	
	2.4 C	ther Non-Uniform Distributions	30	
	2.5 C	comparison of Current Distributions	30	
	2.5.1	Relative Efficiency and Current Density	30	
	2.5.2	Reduction of Current Density in		
		Single Coils	32	
	2.5.3	Reduction of Current Density in		
		Composite Coils	35	

III.	Gen	erai	l Cooling Considerations and the	
	Cool	ling	of Uniform Current Density Coils	37
	3.1	Sir	nple Temperature Relations	37
	3.2	Sir	nple Hydraulic Considerations	41
	3.3	Re	lation of Magnet Parameters to Cooling	
		Re	quirements	45
	3.4	Hy	draulic Parameters and Efficiency	49
	3.5	Co	oling of Uniform Current Density	
		Ma	agnets	53
	3.5	5.1	Hollow Conductor Construction	55
	3.5	5.2	Tape Construction	57
	3.6	Co	enstruction of Uniform Current Density	
		So	lenoids	61
	3.6	5.1	General Comments and Prediction of	
			Performance	61
	3.6	5.2	Specific Examples	62
	3.6	5.3	General References to Coil	
			Constructions	67
717	The	C	alina of High Daufoursanaa Magneta	
IV.			oling of High Performance Magnets	
	and Cooling Considerations for Non-uniform Current Distributions			
	1905-80300			69
	4.1		mposite Coils and General	69
¥	12	000	timization sk Windings	74
	4.2		The Location of Cooling Holes based	/~
	4.2	1	on Resistance Paper Analogue Studies	78
	12	2	Resistance of a Plate with Cooling	70
	4.2		Holes	87
	4.2	2	Field from a Disk with Cooling Holes	88
	4.2		Cooling Hole Distributions Resulting	-
	7.2	Т	in Non-uniform Temperatures	89
	4.3	Ar	plication of Machine Computation to	
	7.5		e Cooling Design of Non-uniform	
			irrent Distributions	90
	44		enstruction of Non-uniform Current	
	1.7		ensity Solenoids .	91
	4 4		General Construction Details and	4.50.99
	••		Disk Coils	91
	4 4	1.2	Specific Examples of Axial Cooled	
		. ,	Disk Coils	93

Contents xi

	4.4	4.3	Specific Examples of Radial Cooled Disks	99
	4	1 4	References to Non-Bitter Disk	"
	т.	т. т	Constructions	101
	4	1 5	Prediction of Performance and Heat	101
	7.	7.3	Transfer Considerations	104
	4 4	16	The Concept of a National Laboratory	105
	1923 - 5		Hybrid Systems	107
	2m-8 3	•••		20 00 550
V.	Ma	gne	tic Stresses	109
	5.1	Fo	orce on an Element	109
	5.2	Fo	rces within a Uniform Current Density	
		Co	oil	112
	5.2	2.1	Tangential Stresses	112
	5.2	2.2	Axial Forces	115
	5.3	Fo	rces Between Coils	117
	5.4	Int	tegration of Body Forces to Find the	
		Ex	act Solution for Stresses in Coils	117
	5.4	1.1	Bitter Disks	117
	5.4	1.2	Uniform Current Density Coils	124
	5.5	Ma	agnetic-Pressure Approximation	125
	5.6	Str	resses in Composite Coils	127
VI.	Sup	erc	onducting Magnets	131
	6.1	Int	troduction	131
	6.2	Re	lationship between Current Density,	
		Fie	eld, and Volume	134
	6.2	2.1	Current Density and Magnetic Fields	134
	6.2	2.2	Current Density and Minimum Volume	135
	6.2	2.3	Uniformity and Coil Volume	139
	6.2	2.4	The Sensitivity of the Volume to	
			Changes in Current Density	143
	6.2	2.5	Non-uniform Current Density Coils	146
	6.3	Cu	rrent Density and Stabilization	150
	6.3	3.1	Characteristics of a Composite	
			Conductor at Uniform Longitudinal	8455 <u>-2</u> 850
			Temperature	151
			Propagation of a Normal Front	164
	6.3	3.3	Current Density for Composite	
	1546	£50 1040	Conductors of $\alpha = 1$	165
	6.3	3.3(a	(a) Codrawn Composites	166

xii

	6.3.3	(b) Cable Composites	169
	6.3.3	(c) Rectangular Composites	170
	6.3.4	Current Density for Composite	
		Conductor of a greater than One	171
	6.4 C	Construction of Superconducting Magnets	174
	6.4.1	Large Coils	178
	6.4.2	Small Coils	179
	6.4.3	Intermediate Size Coils	182
	6.4.4	Cryogenic Considerations	183
VII	Dulsa	Magnets	190
<i>y</i> 11.		ntroduction	190
			190
	1.2 L	Discharge Characteristics of an L, R, C	100
	72 T	Circuit	190
		he Damping Constant	196
	Manuata Managara	ield Relations	198
		Design Procedures for Uniform Current	202
		Density Coils	203
		Ion-Uniform Current Density Pulse Coils	204
	139	he Temperature Rise in Uncooled Pulse	200
	2000	Coils	209
		ong Pulse Magnets	211
	7.8.1	Long Pulse Magnets with Current	210
	700	Control	218
		Tryogenic Coils	218
		Construction of Pulse Magnets	219
		1 Types of Construction	219
		2 Uniform Current Density Coils	219
		3 Non-Uniform Current Density Coils	222
		4 Flux Concentrators	223
	7.10.	5 Implosion Techniques	224
VIII.	Field A	Analysis	226
	8.1 In	ntroduction	226
	8.2 F	ields Along the Axis	226
	8.2.1	Axial Fields from Multiple Coils	230
		ield in the Central Zone	232
		ields Outside the Central Zone	237
	7545 124 124 125 126	Summation of Elemental Loops	237
		Superposition of Semi-Infinite Solenoids	238
		Dipole Fields	239

xiii Contents

8.5 T	ne Design of Compensated Coils to		
O	btain Higher Homogeneities	244	
8.5.1 Graphical Solutions		244	
8.5.2	Machine Computation of Compensated		
	Coils	251	
8.6 C	ontrol of Axial Profiles in Long Multi-		
El	ement Solenoids	258	
8.6.1	Graphical Techniques for Profile		
	Shaping	258	
8.6.2	Machine Computation for Axial Profile		
	Control with Multi-Element Solenoids	258	
8.7 N	oncircular Coils	261	
8.7.1	Rectangular Coils of Infinite Length	263	
8.7.2	Rectangular Saddle and Quadruple		
	Coils of Infinite Length	265	
8.7.3	Rectangular Coils of Finite Length	266	
Computer Tables 8.12.1—8.12.25			
List of Symbols			
Index			