Contents

	NOTATION	xiii
1.	INTRODUCTION AND FINITE-DIFFERENCE	
	FORMULAE	
	Descriptive treatment of elliptic equations	1
	Descriptive treatment of parabolic and hyperbolic equations	4
	Finite-difference approximations to derivatives	6
	Notation for functions of several variables	8
2.	PARABOLIC EQUATIONS: FINITE	
	DIFFERENCE METHODS, CONVERGENCE,	
	AND STABILITY	
	Transformation to non-dimensional form	11
	An explicit finite-difference approximation to $\partial U/\partial t = \partial^2 U/\partial x^2$	12
	A worked example covering three cases and including com-	
	parison tables	13
	Crank-Nicolson implicit method	19
	Worked example including a comparison table	21
	Solution of the implicit equations by Gauss's elimination	
	method	24
	The stability of the elimination method	27
	A weighted average approximation	28
	Derivative boundary conditions	29
	Worked examples including comparison tables:	
	(i) Explicit formula and central-differenced boundary condition	31
	(ii) Explicit formula and forward-differenced boundary	
	condition	33
	(iii) Implicit formula and central-differenced boundary con-	
	dition	36
	The local truncation error and a worked example	38
	Consistency and a worked example illustrating both consis-	
	tency and inconsistency	40
	Convergence, descriptive treatment and the analysis of an	
	explicit approximation	43
	Stability, descriptive treatment	47

viii Contents

	Vector and matrix norms, subordinate matrix norms, $\rho(\mathbf{A}) \leq$	
	$\ \mathbf{A}\ $	49
	A necessary and sufficient condition for stability, $\ \mathbf{A}\ \leq 1$, and	
	two worked examples	51
	Matrix method of analysis, fixed mesh size.	57
	A note on the eigenvalues of $f(\mathbf{A})$ and $[f_1(\mathbf{A})]^{-1}f_2(\mathbf{A})$	58
	The eigenvalues of a common tridiagonal matrix	59
	Theorems on bounds for eigenvalues and an application.	
	(Gerschgorin's theorems)	60
	Gerschgorin's circle theorem and the norm of matrix A	62
	Stability criteria for derivative boundary conditions using (i)	
	the circle theorem (ii) $\ \mathbf{A}\ _{\infty} \leq 1$	63
	Stability condition allowing exponential growth	66
	Stability, von Neumann's method, and three worked examples	67
	The global rounding error	71
	Lax's equivalence theorem (statement only) and a detailed	
	analysis of a simple case	72
	Finite-difference approximations to $\partial U/\partial t = \nabla^2 U$ in cylindrical	
	and spherical polar co-ordinates	75
	A worked example involving $\lim_{x\to 0} (\partial U/\partial x)/x$	77
	Exercises and solutions	79
3.	PARABOLIC EQUATIONS: ALTERNATIVE	
	DERIVATION OF DIFFERENCE EQUATIONS	
	AND MISCELLANEOUS TOPICS	
	Reduction to a system of ordinary differential equations	111
	A note on the solution of $d\mathbf{V}/dt = \mathbf{A}\mathbf{V} + \mathbf{b}$	113
	Finite-difference approximations via the ordinary differential	
	equations	115
	The Padé approximants to $\exp \theta$	116
	Standard finite-difference equations via the Padé approximants	117
	A_0 -stability, L_0 -stability and the symbol of the method	119
	A necessary constraint on the time step for Crank-Nicolson method	122
	The local truncation errors associated with the Padé approxim-	
	ants	124
	Stiff equations	126
	An extrapolation method for improving accuracy in t	126
	The symbol for the extrapolation method	128
	The arithmetic of the extrapolation method	129
	The local truncation errors and symbols of extrapolation	120
	schemes	132

Contents ix

	The eigenvalue-eigenvector solution of a system of ordinary	
	differential equations	
	(i) Preliminary results	132
	(ii) The eigenvalue-eigenvector solution of $d\mathbf{V}/dt = \mathbf{A}\mathbf{V}$	134
	(iii) An application giving an approximate solution for	
	large t	135
	Miscellaneous methods for improving accuracy:	
	(i) Reduction of the local truncation error - the Douglas	
	equations	137
	(ii) Use of three time-level difference equations	138
	(iii) Deferred correction method	139
	(iv) Richardson's deferred approach to the limit	141
	Solution of non-linear parabolic equations:	4.40
	(i) Newton's linearization method and a worked example	142
	(ii) Richtmyer's linearization method	144
	(iii) Lee's three time-level method	146
	A comparison of results for methods (i), (ii), and (iii) for a	
	particular problem	147
	The stability of three or more time-level difference equations:	4.40
	(i) A useful theorem on eigenvalues	148
	(ii) Matrices with common eigenvector systems	150
	(iii) A worked example	150
	Introduction to the analytical solution of homogeneous differ-	1.50
	ence equations:	153
	(i) The eigenvalues and vectors of a common tridiagonal	154
	matrix	154
	(ii) The analytical solution of the classical explicit approxi-	156
	mation to $\partial U/\partial t = \partial^2 U/\partial x^2$	156
	Exercises and solutions	158
4.	HYPERBOLIC EQUATIONS AND	
	CHARACTERISTICS	
	Analytical solution of first-order quasi-linear equations	175
	A worked example and discussion	176
	Numerical integration along a characteristic	178
	A worked example	179
	Finite-difference methods on a rectangular mesh for first-	
	order equations:	
	(i) Lax-Wendroff explicit method and a worked example	
	with a comparison table	181
	(ii) Lax-Wendroff method for a set of simultaneous equa-	
	tions	183
	(iii) The Courant-Friedrichs-Lewy condition	186

X	Contents

	(iv) Wendroff's implicit approximation	187
	Propagation of discontinuities, first-order equations:	
	(i) discontinuous initial values	188
	(ii) Discontinuous initial derivatives	189
	Discontinuities and finite-difference approximations. An ex-	
	ample using Wendroff's implicit approximation	190
	Reduction of a first-order equation to a system of ordinary	
	differential equations	193
	The (1, 0) Padé difference approximation	195
	A comment on the non-stiffness of the equations	196
	The (1, 1) Padé or Crank-Nicolson difference equations	196
	An improved approximation to $\partial U/\partial x$ and the $(1,0)$ Padé	
	difference equations	197
	A word of caution on the central-difference approximation to	
	$\partial U/\partial x$	200
	Second-order quasi-linear hyperbolic equations. Characteristic	
	curves, and the differential relationship along them	202
	Numerical solution by the method of characteristics	204
	A worked example	207
	A characteristic as an initial curve	209
	Propagation of discontinuities, second-order equations	210
	Finite-difference methods on a rectangular mesh for second-	
	order equations:	213
	(i) Explicit methods and the Courant-Friedrichs-Lewy	
	condition	213
	(ii) Implicit methods with particular reference to the wave-	
	equation	216
	Simultaneous first-order equations and stability	217
	Exercises and solutions	220
	ELLIPTIC COLLAMIONO AND OVOTENAMIO	
5.	ELLIPTIC EQUATIONS AND SYSTEMATIC	
	ITERATIVE METHODS	
	Introduction	239
	Worked examples: (i) A torsion problem. (ii) A heat-	
	conduction problem with derivative boundary conditions	240
	Finite-differences in polar co-ordinates	245
	Improvement of the accuracy of solutions: (i) Finer mesh. (ii)	
	Deferred approach to the limit. (iii) Deferred correction	
	method. (iv) More accurate finite-difference formulae in-	
	cluding the nine-point formula	248
	Analysis of the discretization error of the five-point approxi-	
	mation to Poisson's equation over a rectangle. Quoted	252
	result for irregular boundaries	254

Contents xi

Comments on the solution of difference equations, covering	
Gauss elimination, LU decomposition, rounding errors, ill-	
conditioning, iterative refinement, iterative methods	257
Systematic iterative methods for large linear systems	260
Jacobi, Gauss-Seidel, and SOR methods	261
A worked example covering each method	263
Jacobi, Gauss-Seidel, and SOR methods in matrix form	266
A necessary and sufficient condition for convergence of itera-	240
tive methods	268
A sufficient condition for convergence	269
Asymptotic and average rates of convergence	270
Methods for accelerating convergence. (i) Lyusternik's	272
method. (ii) Aitken's method. An illustrative example	272
Eigenvalues of the Jacobi and SOR iteration matrices and two	
worked examples	275
The optimum acceleration parameter for the SOR method. A	
necessary theorem	277
Proof of $(\lambda + \omega - 1)^2 = \lambda \omega^2 \mu^2$ for block tridiagonal coefficient matrices	279
Non-zero eigenvalues of the Jacobi iteration matrix	280
Theoretical determination of the optimum relaxation parame-	
ter ω_b	282
Calculation of ω_b for a rectangle and other solution domains	285
The Gauss-Seidel iteration matrix H (1)	285
Re-ordering of equations and unknowns	286
Point iterative methods and re-orderings	287
Introduction to 2-cyclic matrices and consistent ordering	288
2-cyclic matrices	289
Ordering vectors for 2-cyclic matrices	290
Consistent ordering of a 2-cyclic matrix	292
The ordering vector for a block tridiagonal matrix	294
An example of a consistently ordered 2-cyclic matrix that is	
not block tridiagonal	297
Additional comments on consistent ordering and the SOR	
method	297
Consistent orderings associated with the five-point approxima-	
tion to Poisson's equation	298
Stone's strongly implicit iterative method	302
A recent direct method	309
Exercises and solutions	311

INDEX 334