Contents

Prei Con Con Con	tents	of Volume 1 of Volume 2 of Volume 3	xi xiii xv xvii xix xxi
I	Mix	ed Boundary-value Problems in Mechanics	
		rdogan	1
	1.	Introduction	1
	2.	Definitions: Multiple Series Equations, Multiple Integral	
		Equations	4
		2.1 Multiple Series Equations	4
		2.2 Multiple Integral Equations	7
	3.	Application of Complex Potentials	10
		3.1 A Problem in Potential Theory	10
		3.2 The Case of Periodic Cuts	13
		3.3 An Elasticity Problem for a Nonhomogeneous Plane	18
	4.	Reduction to Singular Integral Equations	22
		4.1 Reduction of Dual Series Equations to Singular	
		Integral Equations	23
		4.2 An Example on Triple Series Equations	29
		4.3 Reduction of Multiple Integral Equations	33
		4.4 Reduction of Multiple Series–Multiple Integral	
		Equations	37
	,	4.5 Remarks on the Selection of Auxiliary Functions	43
	5.	Numerical Solution of Singular Integral Equations of the	
		First Kind	44
		5.1 Solution by Gaussian Integration Formulas	49

		5.2 Solution by Orthogonal Polynomials	57
	6.	Integral Equations with Generalized Cauchy Kernels	59
		6.1 A Plane Elasticity Problem for Nonhomogeneous	
		Media	61
		6.2 The Fundamental Functions	64
		6.3 Numerical Method for Solving the Integral Equations	
		with Generalized Cauchy Kernels	71
	7.	Singular Integral Equations of the Second Kind	73
		7.1 The Fundamental Function	76
		7.2 Solution by Orthogonal Polynomials	79
		7.3 Solution by Gauss-Jacobi Integration Formulas	81
	8.	References	84
II	On	the Problem of Crack Extension in Brittle Solids Under	
	Gen	eral Loading K. Palaniswamy and W. G. Knauss	87
	1.	Introduction	87
	2.	Review of the Two-dimensional Non-planar Crack	
		Problem	94
	3.	Statement and Formulation of the In-plane Problem	98
		3.1 Boundary Value Problem for the Branched Crack	100
		3.2 Modification of the Boundary-value Problem and its	
		Effect on the Strain Energy	103
		3.3 The Strain Energy Change for the In-plane Problem	108
		3.4 Solution of the Modified Boundary-value Problem	111
	4.	Determination of the Crack Branching Angle and of the	
		Critical Load	112
	5.	Discussion of Results for the Two-dimensional Problem	114
		5.1 The Crack Branching Angle	114
		5.2 The Critical Stress	116
		5.3 The Combination of Mode I and Mode II Stress	
		Intensity Factors	117
		5.4 Finite Crack Extension	119
		5.5 Infinitesimal Deviation Angle	120
	6.	Experimental Work	122
		6.1 Material Choice	124
		6.2 Specimen Preparation and Test Procedure	126
		6.3 Data Evaluation	129
		6.4 Results for Mildly Ductile Solids	129
	7.	Crack Growth from a Crack Front Under a General,	
		Three-dimensional State of Stress	130

	8.	An Experiment of Crack Extension in Antiplane	
		Deformation	132
		8.1 Choice of Test Material	133
*		8.2 Specimen Geometry	133
		8.3 Crack Propagation Observation	136
	9.	Related Work on Fracture Involving Mode III	
	•	Deformations	139
	10.	An Approximate Analysis for Multimode Fracture in	
	10.	Brittle Solids	140
	11.	Extension to Mildly Ductile Solids	143
	12.	Appendix—Supplemental Definitions	144
	13.	References	145
Ш	Scar	ttering of Elastic Waves Subhendu K. Datta	149
111	1.	Introduction	149
	2.	Scattering of P-waves by a Liquid Sphere or Cylinder	153
	۷.	2.1 Diffraction by a Liquid Sphere	153
		2.2 Diffraction by a Liquid Spirite 2.2 Diffraction by a Liquid Circular Cylinder	163
	3.	Wave Propagation in a Half-space Containing a	103
	5.	Cylindrical Cavity	164
•		3.1 Method of Line Source Potentials	164
		3.2 Method of MAE	168
	4.	Scattering of Elastic Waves by Rigid Spheroids	174
	т.	4.1 Scattering by a Single Rigid Spheroid	175
		4.2 Wave Propagation in the Presence of a Random	173
		Distribution of Rigid Spheroids	182
	5.	Scattering by a Rigid Circular Disc	185
	٥.	5.1 Equations for P_n , Q_n	187
		5.2 Equations for A_n , B_n and C_n	190
		5.3 Far-field Scattering Amplitudes	192
	6.	References	194
	0.	Appendix A	197
		Appendix B	200
		Appendix C	203
		Appendix D	206
,		· ·	200
IV		ctromagnetic Forces in Deformable Continua	209
		-Hsing Pao	209
		Introduction Related Fountings of Continuum Machanics	
	2.	Balance Equations of Continuum Mechanics	212

3.	Maxwell Equations for Media at Rest	215
	3.1 The Maxwell Equations	216
	3.2 Forces on Free Charges and Free Currents	217
4.	Maxwell Equations for Moving Media	220
	4.1 The Minkowski Formulation (EBDH)	221
	4.2 The Lorentz Formulation (EBPMv)	223
	4.3 The Statistical Formulation (EBPM)	224
	4.4 The Chu Formulation (EHPM)	225
	4.5 Global Laws for Electrodynamics	226
5.	Maxwell Stress Tensor and Minkowski Energy-momentum	
	Tensor	229
	5.1 The Maxwell Stress Tensor	229
	5.2 Balance Laws of Electromagnetic Momentum and	
	Energy	230
	5.3 The Minkowski Energy-momentum Tensor	232
	5.4 Interaction of Fields with Matter	236
6.	Total Energy-momentum Tensors	240
	6.1 Closed Systems and Open Systems	240
	6.2 Total Energy-momentum Tensor	242
	6.3 The Principle of Virtual Power	245
	6.4 Discussion	247
7.	The Theory of Electrons and Statistical Mechanics	248
	7.1 Microscopic and Macroscopic Field Equations	249
-	7.2 Momentum Equation for Composite of Particles	253
	7.3 Equations of Statistical Mechanics	254
	7.4 Discussion	259
8.	Macroscopic Maxwell-Lorentz Forces	260
	8.1 The EBPMv and EBPM Formulations	260
	8.2 The Chu Formulation	262
	8.3 Discussion	263
9.	Magnetostatic Forces on a Whole Body	265
	9.1 Pole, Dipole, and Current-circuit Models of	
	Magnetizations	265
	9.2 Body Forces and Surface Forces	269
	9.3 Various Stress Tensors and Momentum Equations	273
	9.4 Discussion	275
10.	Models for Field-matter Interactions	276
	10.1 Electric and Magnetic Dipoles and Current-circuits	277
	10.2 Force, Couple, and Energy Supply of the Two-dipole	
	Model	278

		10.3 The Dipole-current Circuit Model	283
		10.4 Discussion	285
	11.	Summary of Electromagnetic Forces and Energy	287
	12.	Constitutive Equations and Boundary Conditions	292
		12.1 Constitutive Equations for the Two-dipole	
		Formulation	293
		12.2 Constitutive Equations for the Dipole–current Circuit	
		Formulation	298
		12.3 Boundary Conditions	299
		12.4 Summary and Conclusion	301
	13.	References	303
V	Pro	blems in Magneto-solid Mechanics Francis C. Moon	307
	1.	Introduction	307
	2.	Methods	310
		2.1 Magnetic Forces—Field Method	310
		2.2 Magnetic Forces—Energy Method	318
	3.	Stability of Ferroelastic Structures in Magnetic Fields	322
		3.1 Magnetoelastic Buckling of Beam-plates	322
		3.2 Comparison of Buckling Theory and Experiment	327
		3.3 Magnetoelastic Stability of Circular Rods	332
		3.4 Plate Vibrations in a Magnetic Field	339
	4.	Mechanics of Elastic Conductors	341
		4.1 Introduction	341
		4.2 Continuum Models	342
		4.3 Stresses in High Current Magnets and Coils	343
		4.4 Virial Theorem and Force-free Magnets	346
		4.5 Superconducting Magnets	347
		4.6 Stability of Current-carrying Rods	352
		4.7 Conducting Rods in Magnetic Fields	356
		4.8 Effect of Currents on Plate Vibrations	359
		4.9 Elastic Stability of Superconducting Magnets	361
		4.10 Mechanical Properties of Superconductors	369
	5.	Dynamic Magnetic Forces in Solids	371
		5.1 Introduction	371
		5.2 Magnetic Generation of Stress Waves	373
	i.	5.3 Magnetic Forming in Metals	377
	,	5.4 Magnetic Impulse Testing of Solids and Structures	379
		5.5 Magnetic Forming Forces in Ferromagnetic	
		Conductors	380

383
384
391
391
392
393
396
397
398
402
405
407
113