目 次

本書の	さけんさいゃ	٠.			-
平書の	F114 1 (-	Ø	12	9	_

緒 言	. 1
第1章 軟鋼の降伏	. 6
1.1 降伏点	. 6
1.2 応力勾配が均等なときの降伏	· 10
1.3 円筒の捩りによる降伏	· 11
1.3.1 安定の問題としての降伏	. 18
1.3.2 縦断面で起こる降伏	. 21
1.4 短形および I 形断面のはりの曲げによる降伏	. 25
1.5 捩り, 曲げ, および引張りによる降伏点の比較	. 28
1.6 十字形断面のはりの曲げによる降伏	. 29
1.7 正方形柱体および矩形柱体の捩りによる降伏	. 34
1.8 弾性応力の限界値	37
1.9 降伏の条件	39
1.10 内圧をうける円筒の降伏	41
1.10.1 中肉円筒の降伏	41
1.10.2 厚肉円筒の降伏	46
1.11 円板の回転による降伏	48
1.12 円筒の引張りによる降伏	54
1.13 組合せ曲げ捩りによる降伏	58
第2章 表面層とその強さ	63
2.1 表面層の降伏	63
2.1.1 引張りによる降伏	64
2.1.2 曲げによる降伏	68

2.1.3 振	長りによる降伏	70
2.2 集中応	5力におよぼす表面層の影響	73
2.3 中心羽	しをもった帯板の強さ	74
2.3.1 構	帯板の降伏	74
	帯板の疲れ限度	
2.3.3 弱	支れ寿命における寸法効果	80
第3章 鋳鈴	鉄の破壊	90
3.1 応力な	内配が均等なときの破壊	90
3.1.1 弓	張り,内圧,捩りによる破壊	90
3.1.2 ₺	内圧と捩りの組合せ荷重のもとにおける破壊	· 91
	fl張りと圧縮およびその中間の 2 軸応力における	
	皮壊	
3.2 円筒の	の捩りによる破壊	. 97
	波壊の条件	
3.2.2 有	破壊面の角度	. 99
	札棒の破壊モーメントおよび丸棒と薄肉円筒の破	
	褱ひずみの関係	
3.3 矩形	まりの曲げによる破壊	·106
3.4 鋳鉄の	の破壊と軟鋼の降伏との類似性	·111
3.5 内压。	を受ける円筒の破壊	·112
3.6 外压	を受ける黒鉛円筒の破壊	·117
3.7 回転	こよる円板の破壊	.119
3.8 円板の	の回転による衝撃破壊	.125
3.8.1	舜間写真による観察	.125
3. 8. 2	衝撃破壊とコリオリの力	.127
3.8.3	断面形と破壊の間隔	.132
3.9 火薬	による内圧をうける円筒の衝撃破壊	.134
第4章 高	速車盤の回転強さ	.137

4.1 平等厚さの円板の強さおよび破壊の条件137
4.2 リムをもった円板の強さ143
4.3 ボスをもった円板の強さ144
4.3.1 ボスの影響145
4.3.2 破壊の条件149
4.3.3 再びボスの影響153
4.4 翼をもった円板の強さ158
4.4.1 翼の影響158
4.4.2 実験と理論の比較161
4.5 リムとボスをもった車盤の強さ165
4.6 リム,ボス,翼をもった車盤の強さ169
4.6.1 実 験
4.6.2 実験の説明
4.7 ボスの厚さの限界値176
第5章 内圧をうける円筒の強さ179
5.1 円筒の変形および極限圧力180
5.2 純粋せん断と単純せん断の関係183
5.3 極限圧力と円筒の肉厚の関係191
第6章 疲れと疲れ限度199
6.1 応力勾配が均等であるときの疲れ199
6.1.1 疲れ限度の条件200
6.1.2 引張り圧縮と薄肉円筒の捩りによる疲れ限度202
6.1.3 引張り圧縮による疲れ限度線図204
6.1.4 薄肉円筒の捩りによる疲れ限度線図207
6.2 応力勾配が均等でないときの応力と疲れ208
6.2.1 繰返し捩りによる疲れ208
6.2.2 回転曲げによる疲れ212

6.3 応力勾配が均等でないときの疲れ限度214
6.3.1 疲れ限度の条件214
6.3.2 回転曲げによる疲れ限度217
6.3.3 繰返し振りによる疲れ限度220
6.4 繰返し曲げによるはりの断面形と疲れ限度の関係224
第7章 塑 性230
7.1 3 方向せん断理論231
7.2 純粋せん断と引張りの関係233
7.2.1 純粋せん断233
7.2.2 引張り235
7.2.3 実 験237
7.3 軟鋼の降伏と塑性理論との関係239
7.4 塑性流動におよぼす中間主応力の影響242
7.4.1 中間主応力の影響242
7.4.2 実験と理論の比較245
7.5 応力状態と塑性変形の形249
7.6 塑性変形による異方性253
7.7 ヒステリシス・ループ255
7.7.1 荷重とループの形255
7.7.2 ループにおける降伏点259
7.7.3 再びループの形および降伏点263
7.8 塑性曲線における不連続性267
7.8.1 捩りによる塑性曲線267
7.8.2 折れ曲り点と軟鋼の降伏点との関係268
7.8.3 引張り強さにおける挙動271
7.8.4 塑性曲線に関する考察273
あとがき275