Contents

Chapt	er 1 Introduction	1
1.1	Mechanical Design	1
1.2	Optimum Design	2
1.3	Some Aspects of a Specific Design Problem	3
	The Basic Design Problem	3
	Adequate Design Solution	3
	Optimum Design Solution	4
	Some Salient Characteristics of the Preceding Design Studies	11
	Evolution of the Method of Optimum Design—Some Industrial Examples	11
1.4	Optimum Design by Necessity	11
1.5	High Speed Geneva Mechanism	12
1.6	An Unconventional High Speed Intermittent Motion Mechanism	15
1.7	Optimum Design of a High Speed Cam Mechanism	19
1.8	Optimal Design for Practical Mechanical Elements	20
Refe	erences	21
Chapt	er 2 Some Mathematical Background	22
	Some Approximations for Practical Functions	22
2.1	Simplicity and Accuracy Considerations	22
2.2	Mathematical Functions in Engineering	24
		ix

х		CON	TENTS
	2.3	Conversion Processes for Function Expression	25
	2.4	Errors in Conversion Processes	26
	2.5	Review of Continuous and Differentiable Functions	26
	2.6	Approximating Derivatives by Finite Differences	28
	2.7	Some Examples of Methods for Regenerative	
		Conversions—Curve Fitting	35
		Function Conversion to a Polynomial Series	36
		Example 2.1	38
		Function Conversion to a Simple Exponential Equation	39
		Example 2.2	42
		Function Conversion to Simple Exponential Equation	
		Referred to Shifted Coordinate Axes	43
		Example 2.3	49
		Function Conversion by Graphical Iteration	54
		Function Conversion by Least Squares Regression	55
		Analysis	
		Example 2.4	56
		Function Conversion for Cases of Many Variables	57
	2.8	Some Examples of Methods for Degenerative	50
		Conversions—Simplification	59
		Neglect of Terms in Finite Series	60
		Example 2.5	60
		Consideration of Finite Number of Terms in	62
		Evenuelo 2.6	62
		Example 2.0	64
		Example 2.7 Simplification of Complex Equations by Curve Eitting	04
		on Tabulated or Graphical Data	65
		Estimating the Effects of Relative Changes in	05
		Independent Variables for Simple Exponential Equations	67
			,
		Some Basic Search Techniques for Automated Optimal Design	n 69
	2.9	Single Variable Search for the Extreme	69
		Example 2.8	72
	2.10	Multivariable Search for the Extreme	73
		Direction of Steepest Descent	75
		Search for the Extreme along a Ray	78

CONTE	NTS	xi
	Example 2.9	79
	Example 2.10	82
	Multivariables Search Summary	83
Refe	erences	85
Exer	rcises	85
Chapt	er 3 Manufacturing Errors and Product Performance	88
3.1	Significant Types of Manufacturing Errors	88
3.2	Some Relationships of Stress and Acceleration to Curvature	90
3.3	Effects of Minute Displacement Errors on Curvature and	
	on Rigid Accelerations or Theoretical Stresses	96
	Example 3.1	98
	Example 3.2	99
	Example 3.3	102
2.4	Example 5.4	103
5.4	Product Performance and Product Life	105
	Example 3.5	105
	Surface Finish Effects	108
	Contacting Surface Flaws	110
	Minute Imperfections on Constraining Elements for	
	Bodies in Motion	111
3.5	Conclusions	113
Refe	erences	114
Exe	rcises	114
Chapt	er 4 Material Properties and Failure Theories	116
4.1	Stress and Strength	116
	Material Properties	117
4.2	Some Material Properties Related to Strength	117
	Fatigue Strength of Steel	118
4.3	Some Material Properties Other than Strengths	118
	Review of Combined Stress Systems	121
4.4	Unique Definition and Distribution of Stress Systems	121

xii		CONTENTS
4.5	Principal Stresses	122
	Significant Theories of Failure	126
4.6	Purpose and Choice of the Failure Criterion for Design	126
4.7	Static Stress Criteria for Failure	128
	Maximum Normal Stress Theory	128
	Maximum Shearing Stress Theory	129
	Distortion Energy Theory	129
	Comparison of Significant Theories with	
	Experimental Evidence	129
4.8	Varying Stress Criteria for Failure	131
	Maximum Shearing Stress Theory of Fatigue Failure	132
	Von Mises-Hencky Criterion for Fatigue Failure	135
	Octahedral Shear Stress Criterion for Triaxial State	
	Fatigue Failure	135
	Example 4.1	136
4.9	Surface Wear Criteria for Failure	136
	Abrasive Wear	137
	Adhesive Wear	137
	Example 4.2	138
	Surface Fatigue	139
D (Example 4.3	141
Refe	rences	141
Exer	cises	142
Chapte	er 5 Factor of Safety in Design	145
5 1	Actual Load and Load Conchility for a Machanical	
5.1	Element	146
5.2	Statistical Nature of Actual Load	140
53	Statistical Nature of Load Capability	148
54	Basic Relationship between Statistical Distributions	14)
5.1	for Actual Load and Load Capability of a General	
	Mechanical Element	150
5.5	Normal or Gaussian Distribution of a Variable	153
5.6	Relationship of Actual Load λ to Load Capability L,	
	Assuming Normal Distributions	157

CONTE	INTS	xiii
	Example 5.1	161
	Example 5.2	163
5.7	Selection of Factor of Safety Based on Percentage	
	Estimates for Tolerances on Actual Load and Load	
	Capability	165
	Example 5.3	166
	Example 5.4	167
5.8	Selection of a Factor of Safety for the Case Where the	
	Occurrence of the Failure Phenomenon Would be	
	Disastrous	168
	Example 5.5	168
	Example 5.6	169
5.9	Resolution of $(\Delta \lambda/\bar{\lambda})$ and $(\Delta L/\bar{L})$ into Components	170
	Example 5.7	173
5.10) Conclusions	174
Ref	erences	175
Exe	rcises	175

Chapter 6 Some Optimization Techniques for 178 **Mechanical Elements** Some Basic Background for Mechanical Elements 179 179 6.1 Structures and Machines 6.2 General Characteristics of Mechanical Elements 179 6.3 Bases of Mechanical Design 184 6.4 A General Viewpoint on Typical Design Equations 184 6.5 Adequate Design 187 6.6 Optimum Design 187 6.7 Choosing the Basic Geometrical Shape 189 6.8 A General Mathematical Viewpoint on Optimum Design 190 193 6.9 Primary Design Equation 194 6.10 Subsidiary Design Equations 6.11 Constraints 194 6.12 Summary of Design Equations in Optimum Design 195 Method of Optimum Design (MOD) 197 6.13 General Description of MOD 197

xiv		CONTENTS
	Some Guidelines for Problem Formulation	197
	Basic Procedural Steps for MOD	198
	Types of Variables in (I.F.)	199
	Types of Problems in MOD	200
	General Planning, (I.F.) to (F.F.) in MOD	201
	Some Features of the MOD	203
	Some Limitations of the MOD	204
6.14	Case of Normal Specifications (N.S.) for	
	Mechanical Elements	205
	Example 6.1	207
6.15	Case of Redundant Specifications (R.S.) for	
	Mechanical Elements	211
	Example 6.2	214
	Example 6.4	217
6.16	Case of Incompatible Specifications (IS) for	
0.10	Mechanical Elements	225
	Example 6.5	226
6.17	Modification of Boundary Values	229
6.18	Problems with More than One Primary Design Equation	on 230
	Automated Optimal Design (AOD)	231
6.19	Basic Equation System Format for AOD	232
	Basic Format for AOD Equation Systems	233
	Example 6.6	234
6.20	Normalized Equation Systems for AOD	235
	Unit Based Variables	235
	Unit Based Equations	236
	Unit Based AOD Equation System Format	237
	Example 6.7	238
6.21	Penalized Optimization Quantity, (QP)	239
6.22	Minima–Maxima Equivalence	240
6.23	Good Start Point Strategy	241
	Random Number Generation	242
	Random Design Point Generation	243
	Good Start Point Choice	244

CONTENTS >		
	OPTIGO	245
6.24	OPTIGO General Description	245
6.25	OPTIGO Main Program	247
	Initial Calculations	247
	Start Point for the Search	250
	Stepping Increments Along a Ray from Base Point B_r	250
	Converging to Minimum (QP) Along a Ray	251
	Distance δ_r between Successive Base Points	252
	Convergence to the Solution Point	252
6.26	SUBROUTINE PRTOUT	253
6.27	SUBROUTINE SG	254
6.28	SUBROUTINE QPCALC	255
6.29	SUBROUTINE Q5000	256
	Special Functions and Final Items: F_j 's	256
6.30	SUBROUTINE EJ6000	257
6.31	SUBROUTINE RK7000	258
6.32	SUBROUTINE INPUT	258
6.33	Size Limitations for OPTIGO	260
6.34	Self-Tuning Probes for C_p	261
6.35	Application of OPTIGO	263
	Mode (1): Shotgun Start and Automatic C_p	
	Determinations	264
	Mode (2): Specified Start Point and Automatic	
	C_p Determination	264
	Mode (3): Specified C_p Value and Start Point	264
	Example 6.8	265
	Example 6.9	267
6.36	Some Characteristics of OPTIGO in Operation	270
	Characteristics of Normal Convergence by OPTIGO	270
	Remedial Action for Unusual Cases	271
	Example 6.10	271
6.37	Special Refinements in OPTIGO	274
	Recommendation for General Application of OPTIGO	275
Refe	rences	275
Exer	cises	277

xvi	CC	ONTENTS
Chapte	r 7 Optimal Design of Simple Mechanical Elements	280
7.1	Tensile Bar in Dynamic Loading	280
7.2	Torsion in Simple Cylindrical Bars	284
7.3	Simple Torsion Bar for Minimum Weight	286
7.4	Practical Deviations from Simple Geometry	290
7.5	Practical Torsion Bar for Minimum Weight	296
7.6	Torsion Shaft for Minimum Cost	305
7.7	Torsion Shaft for Minimum Dynamic Torque	309
	Initial Formulation	310
	Exploratory Calculations	312
	Final Formulation	312
	Variation Study General Cuidelines for Flow Chart Synthesis in MOD	314
	Example 7.1	319
7.8	Dynamic Shaft in Combined Loading, (N.S.)	322
	Statement of the Problem	322
	Optimum Design of the Torsion Bar Spring	325
	Example 7.2	333
7.9	Dynamic Shaft in Combined Loading, (R.S.)	334
	Final Formulation	335
	Variation Study	336
	Flow Chart Derivation	339
	Numerical Application	340
Exer	cises	341
	General Problem Statement	341
Chapte	er 8 Optimal Design of Complex Mechanical Element	s 364
8.1	Optimal Design of Helical and Spur Gears	365
	Initial Formulation	366
	Exploratory Calculations	380
	Approach 1 (F.F.)	382
	Strategy for Simplification of the Variation Study	390
	Simplified (F.F.), Approach 2	392
	Variation Study with P_{nd} and N_p Constant	393
	Calculation Flow Chart	395
	Example 8.1	398
	Common Input Values for Problems A through E	399

CONTE	INTS	xvii
8.2	Optimal Design of Helical Springs	401
	Basic Background Information	401
	Objectives for Optimum Design	408
	Boundary Conditions for the Triple Optimization	
	Problem	409
	Initial Formulation for Triple Optimization	410
	Problem Englanden Orberlatione	410
	Exploratory Calculations	410
	Planning the Attack	412
	Problem	412
	Variation Study for Triple Optimization	412
	Problem	414
	Flow Chart for Triple Optimization Problem	418
	Example 8.2	423
	Common Input Data for Five Problems	423
	Solutions to Optimization Problems	423
8.3	Optimal Design of Capillary-Compensated Hydrostatic	
	Journal Bearings	424
	Some Nomenclature for Bearing Design	425
	Objective for Optimal Design	425
	Basic Equations for Design Use	427
	Criterion Function for AOD	432
	Constraints and Specified Items	432
	Analysis for a Design State Point	432
	Unit Based Variables	433
	AOD Equations for Use in OPTIGO	434
	Programming of Equations in OPTIGO	435
	Example 8.3	441
Ref	erences	445
Exe	rcises	446
	Gearset Design Problems	446
	Helical Compression Spring Design Problems	448
	Hydrostatic Journal Bearing Design Problems	449
	Other Complex Mechanical Element Design Problems	450
	Design of a Cylindrical Roller Bearing	450
	nyurouynanne Journai Dearing Design	433

xviii	CC)NTENTS
	Varying Motion Mechanisms	456
	Geneva Mechanism Design	457
	Selection of Standard Bearing for Cam Follower	460
	Gearbox Design	464
	Brake Design	466
	Pivoted Shoe Brake Design Problem	468
	Pivoted Shoe Brake Design Application	471
Append	dix A Some Basic Nomenclature for MOD and AOD	473
A.1	Method of Optimum Design	473
	General Notation with MOD	473
	Exploratory Calculation Notation for MOD	474
A.2	Automated Optimal Design by OPTIGO	474
	Tabulated Descriptions in Text	474
	Some Other Items	4/4
Appen	dix B Optigo Fortran IV Listing and Sample Printouts	476
B .1	Fortran IV Listing of OPTIGO	477
B.2	Optigo Printout Samples from Example 6.9(b) of	
	Chapter 6	483
Appen	dix C An Acceptable-Point Algorithm for	
	Design Optimization	488
C.1	Nomenclature	488
C.2	Introduction	489
C.3	Descent Methods for Unconstrained Function	
	Minimization	491
	Conjugate Directions	492
C.4	Operations of the GCG-GSAP Algorithm	494
	GCG Algorithm	495
	GSAP Univariate Algorithm	495
C.5	Optimal Design of a Torsion Bar Spring	496
	Index to Computer Program of Figure C.1	503
Refe	rences	506

509