目 次

1章 セ	ラミックスの流れ
1.1	セラミックスの種類と分類2
1.2	セラミックスの定義
1.3	ファイン・セラミックスの工業生産量 8
2章 セ	ラミック製造方式の選択15
2.1	工業製品としてのセラミックス15
2.2	製造工程と考慮すべき因子16
	原料の性質/焼結
2.3	レオロジーと粉体の性質20
	粘土のレオロジー/粉末と成形性
2.4	焼結に係わる諸問題22
	緻密化と二次結晶化/気孔と不純物のもたらす影響
2.5	製造方法の開発と試験体25
3章 セ	ラミック製品に要求される性質29
3.1	試験による製品の分析29
3.2	鉱物学的検査32
3.3	色
3.4	寸 法
3.5	X 線 観 察 ······34
3.6	密 度34
3.7	気孔率(空隙率)35

iv	目	次
	吸	水試

17	Ħ	ιΛ.
		吸水試験/染料吸収試験/湿気による変化/最大気孔径
		/透過率/気孔分布と表面組織
	3.8	機械的性質40
		弾性率/強度および類似の諸性質/硬度/水圧試験/耐
		摩耗抵抗性
	3.9	熱的性質44
		可逆熱膨脹係数/比熱/熱伝導度/熱貫流率または熱通
		過率/耐火度/荷重軟化試験/再加熱による永久長さ変
		化/熱衝撃抵抗性
	3.10	化学的性質50
		可溶性塩類/エクロレッセンス/水和抵抗性/耐酸性/
		酸可溶鉄化合物/耐火物のスラグに対する抵抗性/一酸
		化炭素に対する抵抗性
	3.11	電気的性質54
		使用条件に似せた高圧碍子に対する試験/絶縁耐力また
		は絶縁破壊強度/誘電率/力率と損率/体積抵抗率また
		は体積固有抵抗
	3.12	釉の性質
		顕微鏡による検査/グレーズ・フィット/真の釉の物理
		的性質/ダイヤモンド・ピラミッド硬度試験/上絵装飾
		の耐久性試験
		真空に対する緻密性62
	3.14	ファイン・セラミックスに含まれているガス64
4章	乜	ラミックスの性質とその不均一性······65
	4.1	製品の性質を支配する製造工程上の因子65
		焼結過程における物理的現象/原料粒子と結晶化
	4.2	機械的性質76
	4.3	熱的性質80

	熱衝撃抵抗性/熱伝導度/クリープ
4.4	化学的性質95
	高温中の材料の挙動/熱機関内の侵蝕
4.5	電気的性質 104
	電気伝導度(導電率)/半導体/電気絶縁物/誘電体
4.6	磁気的性質 115
	フェライトの組成と構造/フェライトの用途
4.7	光学的性質 119
	吸収と透明性/屈折率/色/燐光と螢光/レーザー
5章 表	₹ 面 処 理⋯⋯⋯⋯127
5.1	表面処理の効果127
	表面処理による性状の変化/表面処理における結晶粒の
	役割/表面処理の方法
5.2	機械加工と表面処理133
	機械加工による性状の変化/機械加工後の表面処理法
5.3	衝撃強度の改善139
	理論強度と静的強度/衝撃に対する抵抗性の改善
6章 原	『料の調製 145
6.1	粒度調整145
6.2	原料の選択基準146
	純度/粒度と反応性/多形
6.3	粉末の整粒152
	篩分け/乾式分級または気流分級/エルトリエーション
	/ボールミル粉砕/アトリションミル粉砕/振動ボール
,	ミル粉砕/流体エネルギーミル粉砕/中間粉砕/沈澱/
	凍結乾燥/プラズマジェットによる合成/レーザー反応
	による合成/その他のSiC微粉末の製造方法/煆焼処理

	6.4	成形前の粉末の処理169
		添加剤/噴霧乾燥/造粒
7章	成	形工程175
	7.1	加 圧 成 形178
		結合剤と潤滑剤の選択/一軸加圧成形/アイソスタティ
		ック・プレス成形/加圧成形の応用例
	7.2	塑性成形191
		機械轆轤成形/押出し/射出成形/圧縮成形
	7.3	鋳 込 み203
		泥漿鋳込み成形/泥漿鋳込み成形の方法
	7.4	石膏型の調整216
	7.5	鋳込み成形工程を制御する上での留意点218
	7.6	その他の成形法220
		可溶型鋳込み成形法/テープ成形
	7.7	生素地の機械加工仕上げ224
8章	乾	燥227
	8.1	成形水分の焼成工程での影響227
	8.2	乾燥収縮の異方法231
	8.3	乾燥中に見られる現象232
		成形水分の蒸発/乾燥と強度の変化/乾燥収縮/亀裂と
		変形
	8.4	乾燥素地の記憶現象237
	8.5	酸化物素地の乾燥・・・・・・238
9章	焼	成239

			目	次	vii
	9.1	焼成と素地の変性			239
		熱仕事と迅速焼成/焼結理論と機構の分析			
	9.2	ホットプレス成形		•••••	248
	9.3	反 応 焼 結		•••••	252
		反応焼結窒化珪素/反応焼結炭化珪素			
	9.4	蒸 着	• • • • • • • • • • • • • • • • • • • •	••••••	255
	9.5	熔融粒子の沈積			255
結		言		• • • • • • • • •	259
索		링 ·····		• • • • • • • • • • • • • • • • • • • •	261