CONTENTS

PART I

SECTION 1

MECHANISMS OF CREEP

J. WEERTMAN Natural Fifth Power Creep Law for Pure Metals	1
G. GOTTSTEIN AND A.S. ARGON Dislocation Theory of Strain Hardening and Steady State Deformation in Creep and Constant Strain Rate Tests	15
M. CARRARD AND J.L. MARTIN Comparison of Creep at Intermediate and High Temperatures in Aluminium Single Crystals	27
J.B. BILDE-SØRENSEN A Model for Deformation-Enhanced Recovery During and After Creep	39
T. WATANABE Magnetic Strengthening - A New Strengthening Mechanism at High Temperatures	51
H. YOSHINAGA and K. KURISHITA The Character of Flow Stress in Metals and Alloys	63
Z. HORITA and T.G. LANGDON The Significance of the Universal Third Power Stress Dependence for the Steady-State Creep Rate	75
H. OIKAWA Influence of the Solute Concentration on Creep Behaviour in Solid Solutions at High Temperature	89
M.A. MORRIS and J.L. MARTIN The Influence of Internal Stresses during Creep of an A1-Zn Alloy	103
H. MECKING, A. STYCZYNSKI, and Y. ESTRIN Analysis of Steady State Flow in Al-Mg Alloys	115
W. BLUM, H. MÜNCH and P.D. PORTELLA Application of the Knitting Model of Creep to Pure Al, AlMg and AlZn Solid Solutions and Particle Hardened Alloy 800H	131

SECTION 2

FRACTURE PROCESSES DURING CREEP	
M. YANG, J.R. WEERTMAN and M. ROTH Use of Small Angle Neutron Scattering to Study Grain Boundary Cavitation	149
M. OTSUKA and R. HORIUCHI Grain Boundary Behaviours and Ductility in Al-Mg Alloy at High Temperatures	157
H.J. McQUEEN and H. MECKING Comparison of Deformation and Failure Mechanisms Observed in Hot Working and in Creep of Metals	169
SECTION 3	
DEFORMATION AND FRACTURE BEHAVIOUR OF SUPERPLASTIC MATERIALS	3
B.P. KASHYAP and A.K. MUKHERJEE Correlation between Microstructural Instability and Non-Steady Flow During Superplastic Deformation of a Microduplex Steel	185
T. HATAYAMA, T. OKABE and H. TAKEI A Kinematical Approach to Deformation Behaviour in Superplastic Materials	197
T. OKABE, T. HATAYAMA, H. TAKEI and M. IKEDA The Fracture Processes in Superplastic Materials	211
D.S. WILKINSON The Behaviour of Superplastic Materials at Large Strains	223
SECTION 4	
DEFORMATION AND FRACTURE PROCESSES IN PARTICLE-STRENTHENED ALLOYS	
N.Y. TANG, D.M.R. TAPLIN, G.L. DUNLOP and A. PLUMTREE Creep of Cu-Cr Type Alloys	235
H.E. EVANS, G. KNOWLES and G.L. REYNOLDS Convergence of Creep Strengths at High Strain Rates in Particle-Strengthened Steels	245

255

M. SCHUMACHER and G. SAUTHOFF

Creep in Alloys with Precipitate Layers on the Grain Boundaries and Coarse Precipitate Particles Within the Grains - Experiment and Model

J. PETERSEIM and G. SAUTHOFF Investigation of the Creep Behaviour of Model Steels with Various Distributions of Small Precipitate Particles	267
B. REPPICH, H. BÜGLER, R. LEISTNER and M. SCHÜTZE Application of the Microstructural Concept of Creep and Rupture Life Time to a γ' Precipitating Ni-Base Alloy - I. Yielding and Creep Behaviour	279
B. REPPICH and H. BÜGLER Application of the Microstructural Concept of Creep and Rupture Life Time to a γ' Precipitating Ni-Base Alloy - II. Creep Rupture Behaviour	299
SECTION 5	
CREEP AND FRACTURE OF NICKEL-BASE ALLOYS	
W. OSTHOFF, H. SCHUSTER, P.J.ENNIS and H. NICKEL The Creep and Relaxation Behaviour of Incomel 617	307
P.J. HENDERSON and M. McLEAN An Evaluation of the Factors Influencing Tertiary Creep in Nickel Base Superalloys	319
J.M. ESCAMEZ and J.L. STRUDEL Damage Nucleation and Development during Creep at 650°C in Three PM Nickel Base Alloys	333
C.L. WHITE, J.H. SCHNEIBEL and M.H. YOO Sulphur and Antimony Segregation to Creep Cavity Surfaces in Ni and an FCC Fe-Ni-Cr Alloy	347
C.D. HAMM and D.A. MILLER The Influence of Boron upon the Creep Properties of Unirradiated Nimonic PE16	359
K. SUGIMOTO, T. SAKAKI, T. HORIE, H. KURAMOTO and O. MIYAGAWA Plastic Anisotropy and Notch-Tensile Creep Strength of Superalloy Single Crystals	371
K. KASAHARA Application of PHACOMP Methods to the Control of Sigma-Phase Precipitation in the Cast HK-40 Alloy	383
SECTION 6	
DEFORMATION AND FRACTURE OF TITANIUM ALLOYS	
W.J. EVANS Low Temperature Creep and Fracture of Near α Titanium Alloys	395

C.G. SHELTON and B. RALPH The Influence of Microstructure on the Temperature Dependent Flow Properties of Ti-6A1-4V	407
R.E. LEWIS, W.C. COONS and I.L. CAPLAN The Hot Ductility Loss in a Titanium Alloy	419
R.E. LEWIS, I.L. CAPLAN and W.C. COONS Effect of Cooling Rate, Strain Rate and Test Temperature on the Hot Ductility of Ti-6Al-2Cb-lTa-0.8Mo	433
SECTION 7	
DEFORMATION AND FRACTURE OF CERAMIC MATERIALS	
A.G. EVANS and W. BLUMENTHAL High Temperature Failure Mechanisms in Ceramic Polycrystals	451
T. HAUG, A.C. BORNHAUSER, H.G. SCHMID, V. GEROLD and R.F. PABST The High Temperature Crack Resistance of ${\rm Al}_2{\rm O}_3$ Ceramics containing a Glassy Phase	473
W.D. VOGEL and R.F. PABST Subcritical Crack Extension of Partially Stabilized Zirconia (PSZ) at Elevated Temperatures	485
H. KURISHITA and H. YOSHINAGA Flow Stress in Transition Metal Carbides	503
H. COHRT, G. GRATHWOHL and F. THÜMMLER Strengthening after Creep of Reaction-Bonded Siliconized Silicon Carbide	515
R. MOUSSA, J.L. CHERMANT and F. OSTERSTOCK Creep of $\alpha\textsc{-SiC}$ Materials Pressed with Various Amounts of Al	527
M. GOMINA, J.L. CHERMANT and F. OSTERSTOCK Crack Propagation in C-SiC Composites	541
R.E. TRESSLER, E.J. MINFORD and D.F CARROLL The Static Fatigue Limit for Silicon Carbide based Ceramics - Flaw Blunting vs. Flaw Growth	551
G. GRATHWOHL Creep and Fracture of Hot-Pressed Silicon Nitride with Natural and Artificial Flaws	565
G. KLEER and H. RICHTER Investigations into Strength and Crack Propagation in ${\rm Y_2O_3^{-D}Oped\ HPSN}$	579

SECTION 8

CREEP AND FRACTURE OF POLYMERIC MATERIALS

J. HRISTOVA Creep of Polymer Composites under Conditions Accelerating Relaxation Processes	591
G. ZACHARIEV Qualitative Model of Creep Damage	603
J. BOWMAN, G. SANDILANDS, and M.B. BARKER The Influence of Flaw Shape and Size on the Stress Rupture Lifetimes of Semicrystalline Thermoplastics	613