Contents of Volume 2

SESSION 6: DEFORMATION OF POLYCRYSTALS

Quantitative Prediction of Texture Evolution of Aluminium during Tensile Strain. Comparison with Experimental Orientation Distribution Function J J ENGEL, M PERNOT and R PENELLE	763
A Modified Sachs Approach to the Plastic Deformation of Polycrystals as a Realistic Alternative to the Taylor Model	769
T LEFFERS	
Incorporating Work Hardening in Yield Loci Calculations W F HOSFORD	775
The Effect of Dispersoids and Grain Size on Mechanical Properties of AlMgSi Alloys	781
O LOHNE and O J NAESS	
Effects of Grain Size and of Carbon Content in the Strain Hardening of Polycrystalline Iron and Low-Carbon Steels	789
M ATKINSON	
Effects of Micro-Cracking and Intrinsic Obstacle Strength on the Hall-Petch Relation for Ultrafine Grain Size Polycrystals	795
R W ARMSTRONG	
Effect of Grain Size and Deformation-Induced Grain Refinement on the Residual Strength of Shock-Loaded Metals and Alloys	801
L E MURR, E MOIN, K WONGWIWAT and F GREULICH	

vi Contents	
The Grain Size Dependence of Mobile Dislocation Density in Copper Alloys at the Onset of the Portevin-Le Chatelier Effect	807
M MAYER, O VÖHRINGER and E MACHERAUCH	
Deformation by Transformation : A Mathematical Treatment P VAN HOUTTE, J DE VOS, E AERNOUDT and L DELAEY	813
On the Yield and Flow Stress of Lamellar Pearlite J GIL SEVILLANO	819
A Dislocation Model for Twinning and Fracture and its Application to HCP Metals M H YOO	825
Strain Hardening of Iron : Axisymmetric vs. Plane Strain Elongation A RAZAVI and G LANGFORD	831
Anisotropy of 250 Maraging Steel Shear-Spun Tubes Z BRAT, P ARI-GUR and D G BRANDON	837
Elastic and Plastic Deformation of Inhomogeneous Materials such as Polycrystals – An Approach with Models T ABE	843
The Effect of Grain Size and Strain on the Tensile Flow Stress of Copper at Room Temperature N HANSEN	849
Relation between Statistical Grain Size Distribution and Yield Strength M KUHLMEYER	855
Deformation-Induced Changes of the Microstructure of Two- Phase Stainless Steel having Microduplex Structure D BERGNER, P KLIMANEK and R SCHERKE	861
Deformation of Eutectoid Steel during Pearlitic Transformation under Tensile Stress E GAUTIER, A SIMON and G BECK	867
The Plane-Strain Compression of Aluminium Bicrystals J-J SERPOUL and J H DRIVER	875
Strain Accommodation in Copper and Aluminium Incompatible Bicrystals C REY and A ZAOUI	881

Contents	vii
On the Nature of the Effect of Low Temperature Thermocycling of the Yield Stress of Austenitic Stainless Steels E M MEDVEDEV, F F LAVRENTEV and T M KURMANOVA	887
Texture and Slip Systems Modifications in Equibiaxial Expansion C GASPARD, P MESSIEN, J MIGNON and T GRÉDAY	893
Strain Rate Sensitivity and the Plasticity of Aluminium Alloys B A PARKER	899
Deformation and Fracture in Aluminum-Zinc-Magnesium Alloys at Elevated Temperature A K GHOSH and C H HAMILTON	905
Properties of Iron-Carbon Alloys under Thermal and Deformed Ageing Conditions S GOLOWIN and W WLASSOW	913
The Effect of Rapid Annealing on the Mechanical Behavior of Cold Rolled Eutectoid Steel A QUERALES and J G BYRNE	921
Deformation of Hexagonal Polycrystals P LUKÁČ and Z TROJANOVÁ	927
The Behavior of Slip during Reverse Loading of eta -Ti-Mn Alloy H MARGOLIN and F HAZAVEH	933
SESSION 7: SOLID SOLUTION HARDENING	
Hardening by Random Substitutional Solutes N LOUAT	941
The Effect of Diffusion on Solid Solution Hardening V PAIDAR	947
High-Temperature Solid-Solution Strengthening Studied through Internal Friction R B SCHWARZ	953
N B Schwarz Solid Solution Softening in Iron-Carbon Alloys J P PEYRADE, P GROH and J P COTTU	959
Solid Solution Hardening and Softening in Iron Alloy Single Crystals between 4.2 K and 300 K	965
K KITAJIMA, Y AONO, H ABE and E KURAMOTO	

viii	Contents	
Substitutional Solid Ternary Tantalum Base	Solution Hardening in Binary and Alloys	971
L A GYPEN and A DERUY	YTTERE	
	ndence of the Yield and Flow Stress Single Crystals Doped with Hydrogen	977
H MATSUI, A KIMURA ar	nd H KIMURA	
Metal Interstitial So	olid Solution Strengthening	983
J M GALLIGAN and P D	GOLDMAN	
Rationalization of So Interstitial Atoms in	oftening and Hardening Effects by n BCC Metals	989
J NAGAKAWA and M MESH	HII	
	oncentration on Temperature Properties of Vanadium	995
O N CARLSON,D K REHBI	EIN and K E BOGACIK	
The Deformation of Ni Solid Solution	iobium Alloys Containing Mo and Ta in	1001
M I WOOD and G TAYLOF	R	
The Deformation of Si Magnesium Alloys	ingle and Poly-Crystals of Lithium-	1007
M I MORA-VARGAS, H SA	AKA and G TAYLOR	
Substitutional Soluti	ion Softening of Iron	1013
P CHOMEL and J P COTI	ΓU	
Scavenging within th Alloy Softening	e Framework of Intrinsic Theories for	1019
E PINK, E MÜGSCHL and	d B ORTNER	
The Solid Solution H	ardening of Steel by Silicon	1025
R R PRESTON		
Plastic Deformation High Temperatures	of Fe-6at.%Si Single Crystals at	1031
N ZÁRUBOVÁ and S. KA	dečková	
The Influence of All ageing of Steels with	oying on the Onset of Dynamic Strain h Low Carbon Content	1037
K HŰTTEBRÄUCKER, O V	ÖHRINGER and E MACHERAUCH	
	winning in Single Crystals of Copper olid Solutions at Temperatures	1049
-	MIRSKI and S N KOMNIK	1043

Contents	ix
Destabilization and Induced Anomalous Work-Hardening during the Plastic Deformation of A1-Cu Solid Solutions	1049
P MERLE and J MERLIN	
Anneal Hardening of Nickel Alloys H WARLIMONT	1055
Solid Solution Hardening P LUKÁČ and Z TROJANOVÁ	1061
Solid Solution Strengthening of Titanium by Aluminum at Low Temperatures	1067
H CONRAD and K K WANG	
Plastic Behaviour of Zircaloy-4 in the Temperature Range $77-1000$ K	1073
J L DEREP, S IBRAHIM, D ROUBY, G FANTOZZI and P GOBIN	
SESSICN 8: FATIGUE	
Correlating Back Stresses and Friction Stresses with Dislocation Behaviour in Fatigued Copper Single Crystals	1081
D KUHLMANN-WILSDORF	
Cyclic Deformation Behaviour ofα-Copper and Underaged Copper-Cobalt Alloy SingleCrystal	1089
M WILHELM and P EVERWIN	
Cyclic Hardening in Copper-Nickel Alloys	1095
P CHARSLEY, A F SHIMMIN and A M H ALI	
Annihilation of Dislocations during Glide at Low Temperatures	1101
H MUGHRABI and U ESSMANN	
Investigation by High Voltage Electron Microscopy of the Microstructural Evolution of 316 L Stainless Steel during Monotonic and/or Cyclic Uniaxial Loading at Room	
Temperature	1107
C DONADILLE, L ESSADIQI, M PERNOT, R PENELLE and P LACOMBE	
Correlation between Microstructure and Fatigue Fracture A GYSLER, J LINDIGKEIT and G LÜTJERING	1113
Plasticity of Duralumin in Low Cycle Fatigue	1110
K T WIERINGA and A W SLEESWYK	1119
The Fatigue Properties of Superelastic Cu-Zn-Al Alloys J JANSSEN, M FOLLON and L DELAEY	1125

x Contents	
Threshold for Fatigue Crack Initiation M E FINE and Y H KIM	1131
The Initiation of Fatigue Cracks at Notches V B LIVESEY and J F KNOTT	1137
On the Influence of Microstructure on the Threshold Level for Fatigue Crack Growth in Steels K MINAKAWA and A J McEVILY	1145
On the Influence of Temperature and Frequency on Fatigue Softening of Structural Steels H VEITH	1151
Temperature Dependence of Fatigue Process of Iron Single Crystals S IKEDA	1157
The Influence of Cyclic Stressing on the Barkhausen Effect in Polycrystalline Iron P KETTUNEN and P RUUSKANEN	1163
Microstructural Stability and Fatigue Deformation in Cu and A1-0.7 at. % Mg Single Crystals B RAMASWAMI, T W LAU and G POON	1169
Dislocation Structures and Persistent Slip Band Formation during Cycling of Age-Hardened A1-Zn-Mg Single Crystals W VOGEL, M WILHELM and V GEROLD	1175
The Correlation of Texture and Fatigue M A BURKE and G J DAVIES	1181
Influence of Crystalline Orientation on the Environment Affected Fatigue Crack Propagation in Copper P VIOLAN, P COUVRAT and C GASC	1189
The Influence of Slip Character on the Low Cycle Fatigue Behaviour G CHALANT and L RÉMY	1195
Creep-Fatigue Interactions in Fibrous Eutectic Composites N S STOLOFF, D J DUQUETTE, C KOBURGER and W A JOHNSON	1201
Influence of Microplasticity and Crack Initiation on the Fatigue Behaviour of Precipitation Hardened Alloys M GRÄF and C VERPOORT	1207
Shear Band Formation during Low-Cycle Fatigue of α -Fe Based Single Crystals T MAGNIN and J H DRIVER	1213

Contents	xi
Cyclic Deformation of Copper Polycrystals K V RASMUSSEN and O B PEDERSEN	1219
The Occurrence of FCC Deformation Twinning under Cyclic Conditions and Strain Reversibility in High-Strain Fatigue L RÉMY and G CHALANT	1225
Effects of Silver on Tensile and Fatigue Properties of an Aluminium-Magnesium Alloy K BOYAPATI and I J POLMEAR	1231
Orientation Dependence of the Cyclic Deformation Properties of Niobium Single Crystals M ANGLADA and F GUIU	1237
Fatigue of NiTi and CuZnAl Shape Memory Alloys K N MELTON and O MERCIER	1243
On the Influence of Overloads on Fatigue Crack Propagation in Structural Steels W DAHL and G ROTH	1249
A Study on Fatigue Crack Propagation of Rail Steels S NISIDA, T URASHIMA, K SUGINO and H MASUMOTO	1255
Crack Propagation in Coarse Two-Phase Steels K HAMBERG and B KARLSSON	1261
A Model for Fatigue Crack Closure in Ductile Materials S PURUSHOTHAMAN and J K TIEN	1267
Detection of Fatigue Damage by Electrochemical Scanning W J BAXTER	1273
Fatigue Failure Prediction by X-Ray Double Crystal Diffractometry and Topography R N PANGBORN, S WEISSMANN and I R KRAMER	1279
SESSION 9: IN-SITU ELECTRON MICROSCOPY DURING DEFORMATION	
In Situ Electron Microscopy of Deforming & Cu-Al Single Crystals M F DENANOT, J VERGNOL and J P VILLAIN	1287
Observation of Dislocation Movement at 20 K during Microdeformation in FCC Metals R GOTTHARDT, PH. BUFFAT and G GREMAUD	1293

	Contents	
Estimation of Frict Centred Cubic Ni-Cr	tion Forces in a Concentrated Face r Alloy	1
N CLÉMENT, F MONCHO	OUX and J L MARTIN	
	eometrical Statistical Parameters of the Obstacle Interaction from In-Situ ements in the HVEM	1
U MESSERSCHMIDT and	d F APPEL	
-	by Carbon and Jerky Motion of Screw g In Situ Experiments	1
F LOUCHET and L P H	KUBIN	
Flow Stress at Inte	Ni Atoms in Ni Rich NiAl; Effect on the ermediate Temperatures (300 ⁰ K to 1000 ⁰ K)	1
A LASALMONIE, M J I	LEQUEUX and P COSTA	
	y of the Substructure during Creep in mediate Temperature	1
D CAILLARD and J L	MARTIN	
Dislocation Pattern Fracture in Pure Me	ns Leading to the Initiation of Ductile etals and Alloys	נ
H G F WILSDORF		
SESSION 10:COMBINAT	TION OF ELEMENTARY HARDENING MECHANISMS	
The Yield Stress of E HORNBOGEN	f Alloys with Complex Microstructure	1
	roduced by Deformation of Composites and echanical Properties	1
G WASSERMANN		-
		Ŧ
	Contributions in Cu-Al ₂ 0 ₃ Polycrystals	_
P BRØNDSTED The Interrelations	hip of γ' ' Size, Grain Size and Mechanical	1
P BRØNDSTED The Interrelations	hip of 7' Size, Grain Size and Mechanical 39, a Cast Nickel-Base Superalloy	1
P BRØNDSTED The Interrelationsh Properties in IN-92 C P CUTLER and S W The Yield Stress, H	hip of 7' Size, Grain Size and Mechanical 39, a Cast Nickel-Base Superalloy	1
P BRØNDSTED The Interrelationsh Properties in IN-92 C P CUTLER and S W The Yield Stress, H	hip of p'' Size, Grain Size and Mechanical 39, a Cast Nickel-Base Superalloy K SHAW Flow Stress and Work Hardening of an th Microduplex Structure	1
P BRØNDSTED The Interrelationsh Properties in IN-92 C P CUTLER and S W The Yield Stress, H Aluminium Alloy with J C JAQUET and H WA	hip of 1' Size, Grain Size and Mechanical 39, a Cast Nickel-Base Superalloy K SHAW Flow Stress and Work Hardening of an th Microduplex Structure ARLIMONT hip of Microstructures and Mechanical	1

Contents	xiii
Relation between Structure and Mechanical Properties of High-Strength Low-Alloy Martensitic Steels after High Temperature Thermomechanical Treatment	1377
G ZOUHAR JR, P FINKE, A GÜTH, M SCHAPER and H-J KLAU eta	
Stress Relaxation and Activation Volume at the Yield Point of Cold Worked and Neutron Irradiated Copper Single Crystals	1383
D BRUNNER and J DIEHL	
Simultaneous Imaging of Different Stages of Hardening Contained in the Surface Region of Deformed Cu-5.8 at. % Al Crystals	1389
N R COMINS and J T FOURIE	
Solid Solution and Strain Hardening of Concentrated Cu-Ni Alloys	1395
H NEUHÄUSER, H FIEBIGER and N HIMSTEDT	
The Mechanical Properties of Cu-Cr-SiO ₂ Single Crystals N J LONG, M H LORETTO and C H LLOYD	1401
Superposition of Precipitation and Solid Solution Hardening in $(\underline{Cu} Au) - Co$ Single Crystals E NEMBACH and M MARTIN	1407
Deformation Hardening of Type 304 Stainless Steel at Elevated Temperature	1413
A P L TURNER	1410
Static Softening in Aluminum Alloys	1419
P FURRER, J M VITEK and E SHAPIRO	
Contribution to the Identification of the Mechanisms Responsible for the Plastic Deformation at Low Temperature of an Alloy Uranium - 7.5 w% Nb - 2.5 w% Zr	1425
D MIANNAY and A M NOMINE	
Microstructural Effects on the Temperature Dependence of the Yield Strength in a Cr-Mo-V Steel	1431
H KOTILAINEN, K TÖRRÖNEN and P NENONEN	
Combination of Elementary Hardening Mechanisms in a Cr-Mo-V Steel	1437
K TÖRRÖNEN, H KOTILAINEN and P NENONEN	
The Influence of Cooling Rate on the Strength and Microstructure of Low Carbon Niobium Steels	1443
A J LAPOINTE and T N BAKER	

Contents

Strengthening of Low Carbon Low Alloy Steels by Rolling at Austenite-Ferrite Two Phase Regions	1449
M NAGUMO, H MORIKAWA, N OKUMURA and Y KAWASHIMA	
Electron Microscope Investigations of Welding-Simulation Heat-Treated Specimens of the Pressure Vessel Steel 22 NiMoCr 37 with Respect to Stress-Relief Cracking	1455
K KUBMAUL, K HERZ, H M PHAM, W DIETRICH and D KUPPLER	

xiv