Contents

1. <u>F</u>	PROBES, DATA ACQUISITION AND DATA PRE-PROCESSING DURING
Ţ	JLTRASONIC TESTING
1.1	REQUIREMENTS FOR THE DATA ACQUISITION DURING ULTRASONIC TESTING. SEARCH TECHNIQUES AND DEFECT ANALYSIS
	G. Engl, KWU, Erlangen V. Schmitz and O.A. Barbian IzfP, Saarbrücken
1.2	HARDWARE-EQUIPMENT FOR AUTOMATIC ULTRASONIC INSPECTION BY THE ALOK-TECHNIQUE
	R.K. Neumann and O.A. Barbian IzfP, Saarbrücken
1.3	NUMERICAL FILTERING OF ULTRASONIC BACKSCATTERED SIGNALS . 27
	H.J. Pongratz, H. Willems, and W. Arnold IzfP, Saarbrücken
1.4	LOGARITHMIC ANALOG-TO-DIGITAL CONVERSION - A NEW CONCEPT FOR THE PROCESSING OF ULTRASONIC DATA
	K. Abend NUKEM, Hanau
1.5	PRINCIPLES AND PRACTICAL APPLICATIONS OF CONTROLLED SIGNALS
	W. Oppermann, HA. Crostack, and H. Morlo University of Dortmund
1.6	ULTRASONIC PLATE TESTING WITH A FREELY PROGRAMMABLE ELECTRONIC SYSTEM
	P. Möller Karl Deutsch Comp., Wuppertal
1.7	MICROPROCESSOR CONTROLLED UT-EQUIPMENT
	U. Opara Krautkrämer, Köln

1.8 EMUS-PROBES FOR BULK WAVES AND RAYLEIGH WAVES. MODEL FOR SOUND FIELD AND EFFICIENCY CALCULATIONS
A. Wilbrand IzfP, Saarbrücken
1.9 TRANSIENT RADIATION PATTERN OF ULTRASONIC TRANSDUCERS ON ELASTIC HALF-SPACES
U. Aulenbacher Theoretische Elektrotechnik, Universität d. Saarlandes and K.J. Langenberg IzfP, Saarbrücken
2. CLASSIFICATION AND RECONSTRUCTION OF DEFECTS BY ULTRASONIC
<u>TESTING</u> 93
2.1 CLASSIFICATION AND RECONSTRUCTION OF DEFECTS BY COMBINED ACOUSTICAL HOLOGRAPHY AND LINE-SAFT
V. Schmitz, W. Müller, and G. Schäfer IzfP, Saarbrücken
2.2 PULSE-SYNTHESIS AND PULSE-ADAPTATION IN ULTRASONIC IMAGING FOR NDT
H. Ermert, D. Hiller, and J. Schmolke Dept. of Electrical Engineering University of Erlangen-Nürnberg
2.3 ACOUSTIC IMAGING 113
G.S. Kino, D.K. Peterson, and S.D. Bennett Edward L. Ginzton Laboratory, Stanford University, Stanford, California
2.4 VISUALIZATION OF ULTRASOUND BY OPTICAL HOLOGRAPHY 127
HA. Crostack, A. Krüger, and W.R. Fischer University of Dortmund
2.5 INSPECTION OF THICK-WALLED COMPONENTS BY ULTRASONICS AND EVALUATION OF THE DATA BY THE ALOK-TECHNIQUE 133
O.A. Barbian, B. Grohs, W. Kappes, and Ch. Hullin IzfP, Saarbrücken

2.6 AN ULTRASONIC PHASED ARRAY SYSTEM FOR DEFECT CLASSIFICATION AND RECONSTRUCTION
W. Gebhardt IżfP, Saarbrücken
2.7 ULTRASONIC CHARACTERIZATION OF ROUGH CRACKS
L. Adler and K. Lewis Department of Welding Engineering, Ohio State University, Columbus, Ohio and M. de Billy and G. Quentin Groupe de Physique des Solides, Université Paris VII, Paris
2.8 SURFACE CRACKS: SIZE AND FAILURE PREDICTION USING LONG WAVELENGTH MEASUREMENTS
J.J. Tien, K. Liang, B.T. Khuri-Yakub, G.S. Kino, Ginzton Laboratory, Stanford University, Stanford CA and D.B. Marshall and A.G. Evans Department of Materials Science & Mineral Engineering University of California, Berkeley, California
2.9 CHARACTERIZATION OF SURFACE DEFECTS BY RAYLEIGH-WAVES 193
A. Klein and H.J. Salzburger IzfP, Saarbrücken
2.10 FREQUENCY DEPENDENT INTERACTION OF ULTRASONIC WAVES WITH SURFACE-BREAKING CRACKS
D.W. Fitting and L. Adler Department of Welding Engineering, Ohio State University, Columbus, Ohio
2.11 MEASUREMENT OF CRACK DEPTH WITH ULTRASONIC METHODS. THROUGH TRANSMISSION- AND REFLECTION MODES
H. Wüstenberg, A. Erhard, HJ. Montag, and G. Schenk BAM, Berlin
2.12 SIZING OF NEAR-SURFACE FATIGUE CRACKS IN CLADDED PRESSURE VESSELS BY THE MULTIPLE BEAM-SATELLITE PULSE TECHNIQUE 229
G.J. Gruber Southwest Research Institute, San Antonio, Texas

CLASSIFICATION 23:	9
J.L. Rose Drexel University, Philadelphia	
3. FORWARD SCATTERING	1
3.1 RESONANCE SCATTERING METHODS FOR NDT, ACOUSTICS, AND RADAR	3
H. Überall, P.J. Moser, A. Nagl, and J.V. Subrahmanyam Department of Physics, Catholic University, Washington, D.C., P.P. Delsanto, J.D. Alemar, and E. Rosario	
Department of Physics, University of Puerto Rico, Mayaguez, P.R., G.C. Gaunaurd and E. Tanglis Naval Surface Weapons Center, White Oak, Silver Spring, MD and D. Brill	
Department of Physics, U.S. Naval Academy, Annapolis,MI)
3.2 SCATTERING OF ULTRASONIC WAVES IN SINGLE PHASE POLYCRYSTALLINE METALS INCLUDING MULTIPLE SCATTERING 26	5
S. Hirsekorn IzfP, Saarbrücken	
3.3 RESULTS ON BROADBAND SCATTERING AND DIFFRACTION SUGGEST METHODS TO CLASSIFY AND RECONSTRUCT DEFECTS IN QNDE 27	7
R.B. Tittmann and J.M. Richardson Rockwell International Science Center, Thousand Oaks, California and	
F. Cohen-Tenoudji, G. Quentin University of Paris VII, Paris	
3.4 NDE TECHNIQUE FOR DETECTION AND CHARACTERIZATION OF POROSITY	7
D.O. Thompson, S.J. Wormley, J.H. Rose, and R.B. Thompson Ames Laboratory, Iowa State University, Ames IA	

3.5	EFFECTS OF MUTUAL COUPLING BETWEEN DIFFERENT POINTS OF A SCATTERER ON IMAGING	305
	H. Chaloupka Institut für Hoch- und Höchstfrequenztechnik Ruhr-Universität Bochum	
3.6	FORWARD AND INVERSE ULTRASONIC SCATTERING MEASUREMENTS IN REALISTIC GEOMETRIES	317
	R.B. Thompson, T.A. Gray, D.K. Hsu, J.H. Rose, and D.O. Thompson Ames Laboratory, Iowa State University, Ames, IA	
3.7	BULK DEFECT CHARACTERIZATION USING SHORT WAVELENGTH MEASUREMENTS	337
	C.H. Chou, K. Liang, B.T. Khuri-Yakub, and G.S. Kino E.L. Ginzton Laboratory, Stanford University, Stanford, California	
4.	INVERSE SCATTERING	355
4.1	IDENTIFICATION AND PARAMETRIC MODELING OF TRANSIENT WAVES	5 357
	D.G. Dudley Department of Electrical Engineering, The University of Arizona, Tucson, Arizona	
4.2	RAY METHODS FOR SCATTERING OF ULTRASONIC WAVES BY CRACKS	369
	J.D. Achenbach and A.N. Norris The Technological Institute, Northwestern University Evanston, IL	,
4.3	INVERSE SCATTERING ALGORITHMS	381
	K.J. Langenberg, D. Brück, and M. Fischer IzfP, Saarbrücken	
4.4	EXACT DIRECT AND INVERSE SCATTERING IN SPATIAL FREQUENCY/TIME SPACE	393
	W.R. Stone IRT Corporation, San Diego, CA 92138	

4.5	APPLICATION OF HIGH FREQUENCY INVERSE SCATTERING TO NONDESTRUCTIVE TESTING	403
	N. Bleistein and J.K. Cohen Department of Mathematics and Computer Science, University of Denver, Denver, CO	
4.6	EXTENSIONS OF RADON'S PROJECTION THEORY IN RADAR TARGET SHAPE RECONSTRUCTION	413
	WM. Boerner, V.K.S. Mirmira, A.C. Manson, CW. Yang, and A.K. Buti Communications Laboratory, Department of Electical Engineering and Computer Science, University of Illinois at Chicago Circle, Chicago, IL	
4.7	IMPLEMENTATION OF INVERSE-SCATTERING ALGORITHMS FOR CHARACTERIZING VOIDS IN GAS TURBINE ROTOR DISCS	425
	G.J. Gruber Southwest Research Institute, San Antonio, Texas	
5. <u>A</u>	ACOUSTIC EMISSION	435
5.1	PROPAGATION AND SCATTERING OF HIGH-FREQUENCY AND PULSED SIGNALS IN THE PRESENCE OF A CONCAVE BOUNDARY	437
	L.B. Felsen Department of Electrical Engineering and Computer Science, Polytechnic Institute of New York, Farmingdale, New York	
5.2	TRANSFER-FUNCTIONS CHARACTERIZING THE PROPAGATION OF AE-SIGNALS	447
	E. Waschkies IzfP, Saarbrücken	
-	ELECTRICAL AND MAGNETICAL METHODS THEORY AND APPLICATIONS	459
6.1	NUMERICAL MODELING OF ELECTROMAGNETIC NDT PHENOMENA	461
	W. Lord Department of Electrical Engineering, Colorado State University, Fort Collins, CO	

6.2	A MODEL FOR THE INTERPRETATION OF A.C. MAGNETIC STRAY FLUX MEASUREMENTS
	G. Walle and G. Dobmann IzfP, Saarbrücken
6.3	DEVELOPMENTS AND INVESTIGATIONS FOR THE APPLICATION OF THE PULSED EDDY CURRENT TECHNIQUE
	G. Wittig, HM. Thomas, and D. Maser BAM, Berlin
6.4	ANALYTICAL METHODS IN FLAW RESPONSE MODELING AND INVERSION FOR EC TESTING
	B.A. Auld, F. Muennemann, and M. Riaziat E.L. Ginzton Laboratory, Stanford University, Stanford, California
6.5	DEFECT CLASSIFICATION BY MULTI-MULTIFREQUENCY EDDY CURRENT 497
	R. Becker and K. Betzold IzfP, Saarbrücken
6.6	MATERIALS TESTING BY SELF-EXCITED SQUARE-WAVE OSCILLATIONS WITH NEW LIFT-OFF COMPENSATION
	M. Lambeck Fachbereich Physik, Technische Universität, Berlin
7. <u>I</u>	NONDESTRUCTIVE STRESS MEASUREMENT
7.1	MEASUREMENT OF STRESS
	G.S. Kino, D. Husson, and S. Bennett Ginzton Laboratory, Stanford University, Stanford CA
7.2	THE USE OF THE TEMPERATURE DEPENDENCE OF ULTRASONIC VELOCITY TO MEASURE APPLIED AND RESIDUAL STRESSES 539
	K. Salama and J.J. Wang Mechanical Engineering Department, University of Houston, Houston, Texas
7.3	DETERMINATION OF MECHANICAL STRESS BY POLARIZED SHEAR WAVES 551
	E. Schneider and K. Goebbels IzfP, Saarbrücken

XXII

7.4	COMPARISON OF DIFFERENT METHODS TO DETERMINE RESIDUAL STRESSES NONDESTRUCTIVELY	561
	V. Hauk, P. Stuitje Institut für Werkstoffkunde, RWTH, Aachen E. Schneider, W. Theiner IzfP, Saarbrücken	
7.5	DETERMINATION OF RESIDUAL STRESSES USING MICROMAGNETIC PARAMETERS	575
	W. Theiner and I. Altpeter IzfP, Saarbrücken	
7.6	MEASURING OF CLOSURE FORCES WITH ULTRASONIC DIFFRACTED WAY	VES
	S. Golan and R. Arone Israel Institute of Metals, Technion, Haifa)O /
LIS	T OF ATTENDEES	597