CONTENTS

BASI	C THEO	RY OF SOLIDS AND LIQUIDS, N.H. March		
1.	Outli	ne	1	
2.	. Metal-Insulator Transitions Due to Band Overlap			
	2.1	Example of Divalent Crystalline Helium	3	
	2.2	Order of Transition	5	
	2.3	Other Metal-Insulator Transitions	6	
3.	Screening in Metals			
	3.1	Linear Wave Theory and Lindhard Dielectric Function	7	
	3.2	Phase Shifts and Friedel Sum Rule	10	
	3.3	Virtual Bound States	13	
4.	Trans	port Theory	14	
	4.1	Boltzmann Formulation (e.g. Residual Resistance)	15	
	4.2	Kubo-Greenwood Theory	18	
	4.3	Applications to Disordered Systems	21	
		4.3.1 Nearly-free-electron liquid metals	21	
		4.3.2 Resistivity of liquid rare earth metals	25	
	4.4	Densities of States in Liquid Metals	30	
	4.5	Pseudo-Gap and Transport in Liquid Hg	31	
	4.6	Critical Fluctuations and Effect on Electrical		
		Transport	32	
5.	Effec	ts of Electron-Electron Interactions	33	
	5.1	In Uniform Positive Background (Jellium)	33	
	5.2	In Narrow Energy Bands (Hubbard U)	37	
6.	Elect	ron Momentum Distribution	38	
	6.1	Correlation Effects	38	
		6.1.1 Phenomenological theory of half-filled		
		Hubbard Band at $T = 0$	40	
	6.2	Effects of Disorder Scattering	42	

7.	Metal-Ins	ulator Transitions Wholly in Liquid State	43
	7.1 Kni	ght Shift in Expanded Mercury	45
Appe	ndix 2.1	: Summary of Self-Consistent Potential Used in	
		Calculating Band Overlap of FCC He	46
Appe	ndix 4.1	: Boltzmann Formulation of Scattering Cross-	
		Section	46
Appe	ndix 4.3.1	: Relation Between Phase Shift Formula and Force-	
		Force Correlation Function for Finite Range	
		Spherical Potential	51
Appe	ndix 4.3.2	: Scattering of Conduction Electrons from Rare-	
		Earth Ions with Localized Spins, in the	
		Disordered (Liquid) State	54
Refe	rences		58
THE .	ANDERSON M	ODEL FOR DISORDERED SOLIDS, D.J. Thouless	
Intr	oduction		61
1.	The Ander	son Model for Disordered Solids	62
	1.1 Loc	alized and Extended States	62
	1.2 And	erson's Model	63
	1.3 Loc	alization in One Dimension	66
	1.4 Se1	f-Consistent Theory	68
	1.5 The	Ioffe-Regel Criterion and Minimum Metallic	
	Co	nductivity	71
2.	Simulatio	n and Scaling	72
	2.1 Com	puter Studies of the Anderson Model	72
	2.2 Bou	ndary Conditions and Resistance	78
	2.3 Sca	ling Theory	82
3.	Electrica	1 Conductivity	83
	3.1 Con	duction in a Static Lattice	83
	3.2 Hop	ping Conductivity	86
	3.3 One	-Dimensional Conductivity	89
Refe	rences		91
PERC	OLATION AN	ID HOPPING TRANSPORT, M. Pollak	95
1.	Some Gene	ral Remarks on Percolation Problems	95
	1.1 Per	colation in Lattices	96

		1.1.1 Bond percolation	96	
		1.1.2 Site percolation	100	
	1.2	Percolation on a Continuum	101	
	1.3	Percolation on Random Lattices	103	
	1.4	Properties Associated with Percolation and Critical		
		Exponents	106	
2.	Норрі	ng Conduction	108	
	2.1	The Hopping Rates	108	
	2.2	The Boltzmann Equation	110	
	2.3	The Random Impedance Network (AC Regime)	112	
3.	The P	ercolation Theory of DC Hopping Conduction	120	
	3.1	Early Theories	121	
	3.2	Percolation Theories for the Critical Resistance	122	
	3.3	Theories for the Pre-exponential	128	
4.	Some	Specific Applications	130	
	4.1	$\sigma(T)$ for Some Densities of States	130	
		4.1.1 A sharp peak in the density of states		
		removed from E_F	130	
		4.1.2 A constant density of states	131	
		4.1.3 A band of states at the Fermi level	132	
		4.1.4 A density of states proportional to $ E ^n$	134	
		4.1.5 Hopping in band tails	134	
	4.2	Changes in Wave Function, Magnetoresistance and		
		Piezoresistance	135	
	4.3	Reduced Dimensionality Systems	137	
		4.3.1 Longitudinal conduction in thin films	138	
		4.3.2 Transverse conduction in thin films	138	
		4.3.3 One-dimensional system	139	
	4.4	Long Range Fluctuations	141	
	4.5	A Brief Survey of Other Hopping Effects Treated by		
		Percolation	142	
Refe	erences	3	144	
META	AL-INSU	JLATOR TRANSITIONS IN DOPED SEMICONDUCTORS, N.F. Mott	149	
1.	Intro	oduction	149	
2.	Dope	Doped Semiconductors 1		

3.	Metal-Insulator Transition in a Crystalline System	162
4.	Wigner Transition	167
5.	Is the Metal-Insulator Transition Discontinuous in Non-	
	Crystalline Systems?	168
6.	The Miscibility Gap and Critical Points in Liquid Systems	171
7.	Hall Effect	172
8.	Is the Electron Gas in Si:P Highly Correlated?	174
9.	Metal-Insulator Transition Induced by a Magnetic Field	179
10.	Distortion of the Lattice and Polaron Effects	180
11.	The Verwey Transition	183
Refe	rences	189

THE METAL-NONMETAL TRANSITION IN DOPED SEMICONDUCTORS, H. Fritzsche

1.	Introduction		
2.	Characteristic Concentration Regions		
3.	Metal	lic Range N > n _{cb}	201
	3.1	Stress-Birefringence	202
	3.2	Piezoresistance	205
	3.3	The value of n _{cb}	210
4.	Metal	lic Impurity Band Range n _c < N < n _{cb}	212
	4.1	Low Temperature Dependence of p	214
	4.2	Anomalous Magnetoresistance	215
5.	Inter	mediate Impurity Conduction Range N < n _c	222
	5.1	Change in Overlap	223
	5.2	Effect of Compensation	226
	5.3	Variable Range Hopping	226
	5.4	Magnetoresistance	226
	5.5	Dielectric Anomaly	230
	5.6	Evidence for Localized States	231
6.	Conc1	uding Remarks	233
Refe	rences		235
HALL	EFFEC	T IN HOPPING AND DIFFUSIVE TRANSPORT, L.R. Friedman	2 39
1.	Intro	duction	239
2.	Conve	ntional Theory of the Hall Effect	240
3.	Норрі	ng-Type Transport	241

4.	Miller-Abrahams Regime		
	4.1 The ac Hall Effect	243	
	4.2 The dc Hall Effect	244	
5.	The Sign of the Hall Effect	245	
6.	The Hall Effect Due to Extended State Diffusive Motion	246	
7.	Comparison with Experiment	248	
Refe	References		

MAGNETIC PROPERTIES OF DOPED SEMICONDUCTORS AND TUNGSTEN BRONZES,

D.F.	Holco:	nb		251
1.	Introduction			251
2.	Magne	tic Prope	erties of Donor Electrons	252
	2.1	Backgrou	und-Simple Models	252
		2.1.1	Pauli susceptibility	252
		2.1.2	Curie-Weiss susceptibility	252
		2.1.3	Magnetic Hamiltonian of electron system	252
		2.1.4	ESR determination of spin susceptibility	254
	2.2	ESR Stu	dies of Interacting Donors in Semiconductors-	
		Mostly S	Si:P	254
	2.3	Values o	of J, Spin Clusters, and Spin Delocalization	257
	2.4	Spin Su	sceptibility as a Function of Impurity	
		Concent	ration and Temperature	260
3.	NMR S	tudies o	f Electron or Hole Systems	263
	3.1	Hyperfi	ne Interaction and Korringa Theory	263
		3.1.1	Limitations of the model for application to	
			disordered systems	266
	3.2	Experime	ental NMR Results in the Fully Metallic State	268
		3.2.1	Si:P	268
		3.2.2	Other common semiconductors	271
		3.2.3	Na _x WO ₃	271
	3.3	The Tra	nsition Region	275
		3.3.1	Evidence for electron correlation effects	278
		3.3.2	Values of K near the I-M transition	279
4.	Summa	ry of In	formation Obtained from Magnetic Measurements	280
Ackn	owledg	ements		282
Refe	rences			283

THE	METAL	NON-METAL TRANSITION IN TWO-DIMENSIONAL SYSTEMS,	
M. P	epper		285
1.	Intro	duction	285
2.	Quant	um Effects in the Inversion Layer	286
3.	Local	ization at Low Temperatures	287
4.	Exper	imental Aspects of Localization	288
	4.1	Introduction	288
	4.2	Hopping Conduction	289
	4.3	Conduction at the Mobility Edge	290
	4.4	Localization Parameters	292
	4.5	The Hall Effect	293
5.	Inter	facial Disorder and Localization	296
	5.1	Interfacial Charge	296
	5.2	Substrate Bias Effects	297
	5.3	Interface Engineering and Hole Trapping	299
6.	0ther	Aspects of the Transition	300
7.	Impur	ity Bands in the Inversion Layer	302
8.	The M	etal Non-Metal Transition in Other Two-	
	Dimen	sional Systems	302
9.	The M	etal Non-Metal Transition in Two Dimensions	
	Produ	ced by a Magnetic Field	303
	9.1	The GaAs Impurity Band	304
	9.2	Si Inversion Layers	306
Ackn	owledg	ements	308
Refe	rences		309
TUNG	STEN B	RONZES: FLUORINE OR TANTALUM SUBSTITUTION, J.P. Doumerc	313
1.	Intro	duction	313
	1.1	Crystal Structure of Tungsten Bronzes	313
		1.1.1 The cubic phase	313
		1.1.2 Structures related to tungstic oxide phases	314
		1.1.3 The hexagonal phase	314
		1.1.4 The tetragonal II phase	315
	1.2	Phase Diagram of the $\operatorname{Na}_x WO_3$ System	316
	1.3	Electronic Properties	316

2. Fluorine Substitution in Tungsten Bronzes 317

	2.1	The Na WO F System	318
	2.2	Transport Properties in Na WO 3-yFy	319
3.	Tanta	lum Substitution in Tungsten Bronzes	320
	3.1	Crystal Growth and Characterization	320
	3.2	Electrical Properties of Na Ta $W_{1-v_{3}}^{0}$	321
4.	Concl	usions	323
References			324

```
References
```

THEORETICAL MODELS OF THE TRANSITION IN DOPED SEMICONDUCTORS,

H. Ka	amimura	327
1.	Introduction	327
2.	Electron Correlation in an Isolated Impurity Centre	330
	2.1 Preliminaries	330
	2.2 Experimental Results on a D Ion	332
	2.3 The Ground State Energy of a D Ion	334
	2.4 Comparison with Experimental Results	340
3.	The Mott-Hubbard Model for the Structurally Random System	34 1
4.	Paramagnetic Properties of the Mott-Hubbard Model	349
	4.1 General Formula for the Spin Susceptibility	349
	4.2 Spin Susceptibility for a Simple Example of a	
	Half-Filled Impurity Band	351
	4.3 Comparison with Experiments	354
5.	Correlation Effects on Anderson Localized States	358
Ackı	nowledgements	365
Refe	erences	366
ELE	CTRON-HOLE LIQUIDS, T.M. Rice	369
1.	Introduction	369
2.	Electron-Hole Liquid in Ge and Si	369
3.	Doped Semiconductors	385
4.	The Metal-Nonmetal Transition: Correlation vs. Disorder	390
5.	Conclusions	396
Ack	nowledgements	396
Ref	erences	397

ASPECTS OF ELECTRON STATES IN HEAVILY DOPED SEMICONDUCTORS, K.-F. Berggren 399 1. Introduction 399 2. Some Quantitative Estimates of the Mott-Hubbard Critical Concentration 400 An Electron Hole Droplet Analogy to the MNM Transition 3. 404 A 'Unifying' Model 4. 410 Magnetoresistance 5. 412 References 420 THE METAL-NONMETAL TRANSITION IN LIQUID ALLOYS, J.E. Enderby 425 1. Introduction 425 2. Liquid Structure 426 2.1 The Structure Factor S(Q) 426 2.2 The Radial Distribution Function g(r) 427 2.3 The Structure of Binary Liquids 429 3. Structural Models, Bonding and 'Benchmarking' 430 3.1 Introduction 430 3.2 Purely Ionic Liquids 430 The symmetric case with complete ionization 3.2.1 (e.g. liquid NaCl and RbCl) 430 3.2.2 The non-symmetric case with complete ionization (e.g. BaCl,) 431 3.2.3 Ionic systems with incomplete ionization (e.g. molten cuprous chloride) 433 3.3 Molecular Liquids (e.g. molten TiCl,) 434 3.4 Extended Covalent Networks (e.g. liquid Te) 435 Electronic Behaviour of Some Liquid Alloys 4. 436 4.1 Alloys in which Both M and A are Metallic 436 4.1.1 Lithium alloys 437 4.1.2 Other alkali metal systems 440 4.1.3 Liquid Hg-Bi 440 4.2 Systems in which M is Metallic and A is Te 440 5. Electron Transport - Theory 441 6. Structure and Electronic Properties: Exploring the

444

Links Between Them

	6.1	Metal-Metal Systems	444	
	6.2	M-Te Alloys	447	
Ackr	Acknowledgements			
Refe	rences		452	
EXPA	NDED I	IQUID METALS, N.E. Cusack	455	
1.	Intro	oduction	455	
	1.1	What is the Problem?	455	
	1.2	Problems for Experimenters and Theoreticians Alike	456	
	1.3	Problems for Experimenters	457	
	1.4	Problems for Theoreticians	458	
2.	Kn ow]	edge Derived from Experiment	459	
3.	Theor	retical Ideas Used in the Discussion	466	
	3.1	Band Structure of Hypothetical Expanded Crystals	466	
	3.2	Band Structure of Expanded Liquid Hg	467	
	3.3	The Pseudo-Gap	469	
	3.4	The Random Phase Model (RPM)	469	
	3.5	Percolation	471	
	3.6	Metal Non-Metal Transition Mechanisms	475	
		Wilson or band crossing transition	475	
		Mott and Hubbard transitions	475	
		Anderson transitions	475	
		Extrapolations of the Anderson idea	475	
		Combination of mechanisms	476	
		Discontinuous or continuous transitions?	476	
		General models involving statistical mechanics	478	
4.	Compa	arison of Theory and Experiment	478	
	4.1	Mercury	478	
	4.2	Alkali Metals	484	
5.	Summa	ary and Conclusions	485	
Ackr	nowledg	géments	486	
Refe	rences	3	488	
	100		1	
AUTHOR INDEX 4				
SUBJECT INDEX			503	