## Contents

## MICRO-STRUCTURAL DEVELOPMENT AND VOID SWELLING

| 2.   | Effect of dose rate on the microstructure of cold-worked 316 stainless steel. L. BOULANGER, L. Le NAOUR and V. LEVY                                                                     | 1  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.   | Primary recrystallisation and void swelling behaviour of cold worked, niobium stabilised austenitic steels. R.M. BOOTHBY, T.M. WILLIAMS and D.R. HARRIES                                | 5  |
| 7.   | Void swelling in ion-irradiated austenitic Fe-Cr-25 Ni alloys. D.J. MAZEY, D.E.J. BOLSTER and W. HANKS                                                                                  | 9  |
| 8.   | Void swelling and microstructural development in experimental austenitic alloys. D. GULDEN and K. EHRLICH                                                                               | 13 |
| 9.   | Void swelling in cold worked commercial alloys with Ni-contents between 15% and 44% after heavy ion irradiation. D. GULDEN and G. KNOBLAUCH                                             | 17 |
| 10.  | High dose stainless steel swelling data on interior and peripheral oxide fuel pins. A. BOLTAX, J.P. FOSTER and U.P. NAYAK                                                               | 21 |
| 11.  | Effect of time and dose rate on the swelling of 316 cladding in Phénix. J.L. SERAN and J.M. DUPOUY                                                                                      | 25 |
| 12.  | Void swelling in PFR core materials. C. BROWN, G.A.B. LINEKAR and E.J. FULTON                                                                                                           | 29 |
| 14.  | Effects of cold work on void nucleation and growth in an austenitic stainless steel during heavy-ion and electron irradiation. V.N. VOEVODIN, B.V. MATVIENKO, B.N. SINGH and T. LEFFERS | 33 |
| 15.  | The factors which control the nucleation and growth of voids in austenitic steels during electron irradiation. M.J. MAKIN                                                               | 37 |
| 16.  | Comprehensive modelling of void swelling in steels. R. BULLOUGH, S.M. MURPHY and M.H. WOOD                                                                                              | 43 |
| P1.  | Precipitation in 20 Cr-25 Ni type stainless steel irradiated at low temperatures in a thermal reactor (AGR). C. TAYLOR                                                                  | 47 |
| P2.  | Radiation-induced microstructural changes in Ni-C and Pt-C alloys. P.G. REGNIER and N.Q. LAM                                                                                            | 51 |
| P5.  | Some characteristics of a diamond cubic phase commonly observed in irradiation austenitic steels. T.M. WILLIAMS and P.W. LAKE                                                           | 55 |
| P6.  | Dimensional stability of some Fe-Ni-Cr alloys used in nuclear power generation.  A. MARUCCO and B. NATH                                                                                 | 59 |
| P9.  | Void swelling behaviour of UK steels. C. BROWN, R.M. SHARPE, E.J. FULTON and C. CAWTHORNE                                                                                               | 63 |
| P10. | Effects of grain boundaries and dislocation-cell walls on void nucleation and growth in aluminium during fast neutron irradiation. A. HORSEWELL, F.A. RAHMAN and B.N. SINGH             | 69 |
| P11. | Response of aluminium and its alloys to exposure in the high flux isotope reactor. K. FARRELL                                                                                           | 73 |

| P12. | Some effects of alloying elements on void swelling in high purity Fe-Ni-Cr alloys. J. CAWLEYand F.B. PICKERING                                | 77  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| P13. | Defect structure in ion irradiated nickel-carbon and nickel-silicon alloys. K.A. SHOAIB, S.J.H. BUKHARI and K. EHRLICH                        | 83  |
| P14. | Temperature dependent void growth in electron irradiated materials. A.J.E. FOREMAN                                                            | 87  |
| P15. | Swelling of oxide dispersion strengthened ferritic alloys. M. SNYKERS and W. VANDERMEULEN                                                     | 91  |
| P16. | Role of inert and reactive gases in void nucleation. A.J.E. FOREMAN and B.N. SINGH                                                            | 95  |
| P17. | Relaxation volumes of self-interstitial-atoms and vacancies in metals. P. EHRHART                                                             | 101 |
| P18. | Elastic shear polarizabilities and the inhomogeneity interaction of self-interstitial-atoms. KH. ROBROCK                                      | 105 |
| IN-R | EACTOR CREEP                                                                                                                                  |     |
| 17.  | Irradiation creep of solution annealed and cold worked 316 stainless steel. J.L. BOUTARD, Y. CARTERET, R. CAUVIN, A. MAILLARD and Y. GUERIN   | 109 |
| 18.  | The in-pile deformation of austenitic stainless steel pressurized capsules after irradiation up to 35 dpa NRT. HJ. BERGMANN and M. LIPPENS    | 113 |
| 19.  | Irradiation creep and swelling of ferritic steels irradiated in fast reactors: new results.  A. de BREMAECKER and JJ. HUET                    | 117 |
| 20.  | Irradiation creep of the martensitic steel No. 1.4914 between 400°C and 600°C (Mol 5B). K. HERSCHBACH and W. DOSER                            | 121 |
| 22.  | Progress in the theory of radiation and thermal creep. R. BULLOUGH, M.W. FINNIS, J.R. MATTHEWS and M.H. WOOD                                  | 125 |
| P19. | The creep of solution annealed, austenitic steels at about 500 K in the Dounreay Fast Reactor (DFR). G.W. LEWTHWAITE and D. MOSEDALE          | 129 |
| P21. | Irradiation creep in model alloys for fusion reactor first walls. P. JUNG                                                                     | 133 |
| HIGH | H TEMPERATURE MECHANICAL PROPERTIES                                                                                                           |     |
| 25.  | Irradiation effects on the fracture toughness of 20% cold worked Type 316 stainless steel. F.H. HUANG and G.L. WIRE                           | 135 |
| 26.  | The fracture toughness of fast reactor irradiated Type 321 stainless steel and Nimonic PE16. E.A. LITTLE                                      | 139 |
| 27.  | The effect of boron on the development of helium induced creep embrittlement in Type 316 stainless steel. B. VAN DER SCHAAF and P. MARSHALL   | 143 |
| 28.  | The influence of helium on high temperature fatigue of Type 316 stainless steel. I.S. BATRA, K. SONNENBERG and H. ULLMAIER                    | 149 |
| 29.  | Mechanical behaviour of irradiated 20% cold worked Type 316 stainless steel subjected to a biaxial stress state. N.S. CANNON and G.D. JOHNSON | 153 |
| 30.  | Mechanical properties of irradiated solution annealed and cold worked 316 cladding. J.L. BOUTARD, J.M. DUPOUY and J.P. SAGOT                  | 157 |
| 32.  | Post-irradiation creep rupture properties of the 12% Cr martensitic steels 1.4914 and 1.4923. C. WASSILEW, K. EHRLICH and K. ANDERKO          | 161 |
| P22. | Influence of TiC precipitation in stainless steel on strength, ductility and helium embrittlement. W. KESTERNICH, M.K. MATTA and J. ROTHAUT   | 165 |

| P26.                                                        | Creep embrittlement of austenitic stainless steels with titanium addition. M.F. FELSEN                                                                                   | 167 |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| THEI                                                        | RMAL REACTOR MATERIALS                                                                                                                                                   |     |  |  |
| 33.                                                         | Influence of copper on the defect microstructure and radiation strengthening of iron. F. FRISIUS, R. KAMPMANN, P.A. BEAVEN and R. WAGNER                                 | 171 |  |  |
| 35.                                                         | Correlation of creep and growth of pressure tubes with operating variables and microstructure. R.A. HOLT, A.R. CAUSEY and V. FIDLERIS                                    | 175 |  |  |
| 37.                                                         | The enhancement of fatigue crack growth rates in zirconium alloys in a reactor environment. C. PICKER and B.W. PICKLES                                                   | 179 |  |  |
| 38.                                                         | Annealing studies of Zircaloy-2 cladding at 580–850°C. E.D. HINDLE                                                                                                       | 183 |  |  |
| P27.                                                        | The non-destructive examination of reactor pressure vessel steels by positron annihilation. J.P. HIGHTON                                                                 | 187 |  |  |
| DESIGN AND PERFORMANCE OF REACTOR COMPONENTS AND STRUCTURES |                                                                                                                                                                          |     |  |  |
| 39.                                                         | Transport of carbon in 316 steels submitted to neutron irradiation. J. ROUAULT, L. GALLAND, R. CYTERMANN and M. COLIN                                                    | 191 |  |  |
| 40.                                                         | Influence of the different loadings on diametral and axial plastic strains of the claddings of Phénix pins. Y. GUERIN and J.L. BOUTARD                                   | 195 |  |  |
| 41.                                                         | Fast reactor core distortion. J.A. DODD                                                                                                                                  | 199 |  |  |
| 42.                                                         | Component deformation in PFR core. J.K. BUTLER, R.J. LILLEY, A.B.G. WASHINGTON, D.P. WILLIAMS, K.M. SWANSON and A.J. BROOK                                               | 203 |  |  |
| 43.                                                         | LMFBR fuel subassembly design: measures to meet the behaviour of irradiated stainless steel. H. MAYER, K. FENNEKER, J. SINGER and H. TÖBBE                               | 207 |  |  |
| 44.                                                         | Mechanical behaviour of irradiated fuel pin cladding evaluated under transient heating and pressure conditions. M.L. HAMILTON, G.D. JOHNSON, C.W. HUNTER and D.R. DUNCAN | 211 |  |  |
| 45.                                                         | Analysis of the mechanical properties of irradiated fuel pin cladding relative to transient performance applications. W.F. BRIZES and G.D. JOHNSON                       | 215 |  |  |