Table of Contents: Volume 1

Chapter I Plates and Shells

Some Problems of Shearing and Twisting of Shallow Spherical Shells (E. Reissner)	I-3
Formulation of Reissner-Mindlin Moderately-Thick/Thin Plate Bending Elements (D.P. Chen, Y.S. Pan)	I-13
Deformations and Stresses in Shallow Spherical and Paraboloidal Domes with Polar Openings under Rotationally Symmetrical Loads	
(O.A. Fettahlioglu, A.M. Sayed)	I-19
Algorithms for Nonlinear Contact Constraints with Application to Stability Problems of Rods and Shells (P. Wriggers, W. Wagner, E. Stein)	I-33
A Quadrilateral Membrane Element with Rotational Freedoms (P.G. Bergan, M.K. Nygård)	I-41
The Finite Element Method of Viscoelastic Large Deformation Plane Problem with Kirchhoff Stress Tensors-Green Strain Tensors Constitutive Relation (Y-P. Shen, Y-H. Chen)	I-51
A Shape Function Routine for a Thin, Curved Beam Finite Element (L.F. Boswell)	I-57
Influence of Element Form on Accuracy in Isoparametric	
Elements (Y. Wu)	I-65
Two Shear Deformable Plate Theories Vis-a-Vis Two Discrete Methods (T. Kant)	I-69
Elasto-Plastic Analysis of Thick Walled Cantilevered	1-02
Tubes (A.L. Deak)	I-77
Numerical İnvestigation of the Deformation Behavior of Elastic-Plastic Circular Thick-Walled Tubes under External Pressure and Axial Load	
(Y. Tomita, A. Shindo, Y.S. Kim)	I-83

Practical Method of Analysis of Rectangular Plates with Holes and Complicated Boundary Conditions by the Use of Spline Functions (R. Zhou, G. He)	I-89
A Mixed Finite Element Method for Layered Composite Plates (J.E. Akin, Y.W. Kwon)	I-95
On the Selection of Stress Parameters for Hybrid/Mixed Finite Elements (T.Y. Chang, A.F. Saleeb)	I-103
Quadratic Spline Thick/Thin Plate Triangular Hybrid Elements (S. Yuan)	I-111
Reasonable Selection of the Stress Modes in a Hybrid Stress Element (J. Zhao)	I-117
Development of Hierarchal Finite Element Methods at BIAA (D-C. Zhu)	I-123
Reduced Integration, Nonconforming Modes, and their Coupling in Finite Elements (C-K. Choi, S-H. Kim)	I-129
Thick Shell Elements with Optimal Transverse Shear Interpolation (M. Tateishi, J.C. Nagtegaal, S. Nakazawa)	I-135
Stiffened and Continuous Annular Sector Plates (I.E. Harik, B.F. Haddad)	I-143
The Finite Strip-Element Method (H. Wang, J. Zhang)	I-151
An Optimally Controlled Four-Node Quadrilateral Element for Reissner-Mindlin Plate (L-Y. Tong)	I-157
The Recent Advances of MWR for Solid Mechanics in China (C. Xu)	I-163
A Study of the Isoparametric Timoshenko Beam Element with Reduced Integration (T. Yokoyama, K. Kishida, K. Nakagawa)	I-173
Finite Element Models Based on the Method of Weighted Residuals (H.Y. Yang, Z.G. Zhao, L.J. Ni)	I-179
On Simple Finite Element Methods for Mindlin Plates (J. Pitkäranta)	I-187
Panpenalty Finite Element Method (Y. Gao, K-C. Hwang)	I-191
Further Discussion of the New Lagrangian and Serendipity Degenerated Shell Elements	
(H.C. Huang)	I-197

Chapter II Solid and Structural Mechanics

On a Combined Stability and Contact Problem Concerning Multi-Lamellae Compression Flanges of I-Beams (Z.S. Chen, H.A. Mang)	[-3
A Variational Framework for n-th Order Invariant Continuum Mechanics (R. Segev)	-11
The Formulation and Solution of the Governing Equations of Motion for Three-Dimensional Linear Viscoelastodynamics (P.K. Wong)	- 17
Quasi-Generalized Virtual Work Principle and 3-Kind Variable of Generalized Variational Principle in Elastic Theory	
(R-S. Tang) II- The Buckling Problem of Non-Homogeneous Beam	-23
	-29
The Exact Solution of Unequal Thickness Plate Problem	
	-33
Automatic Input of Computer Analysis in the Saw-tooth Transverse Bents	
(J.K. Zhong) II-	-39
Computer-Aided Nondestructive Measurements of Plastic Strains from Surface Displacements	-43
(T. Mura, B. Cox, Z. Gao)	13
Substructures: Primary and Secondary Systems	4.0
(B. Zastiau)	-49
Aero-Hydroelasticity and Stress of Spacers for Fuel Elements as Structural Anisotropic Domes Composed of Cylindrical Shells	
(V. Kuželka) II-	-55
A Finite Element Model for the Lateral Strength of Railroad Track Structures	
	-61
Edge Effect of Hyperbolic Cooling Tower Supported by Column System	ć 7
(w. ha, k. bhao, h. ha)	-67
Effect of Structural Twisting on the Optimal Stiffness of Shear Wall in Tall Building (Q. Wang)	-73
A Minimum Principle on Displacements and a Related NLP	
Formulation for the Elastostatics of Cable Systems (M. Cannarozzi, R. Contro) II	-79
An Adaptive Dynamic Relaxation Method for Static Problems (P. Tong)	-89

Elastic Analysis of a Cylindrical Storage Tank by the Coupling Method of Boundary and Finite Elements (S. Yoshida, T. Miyoshi)
A Semi-Analytical Finite Strip for Continuous Plate Structures (B.W. Golley, M.A. Hamstead)
Use of Off-Set Beam Elements in a Model for Torsional Deflection Analysis of a Grid Structure of Open Cross Sections (N. Toda, N. Yoshimura)
Transient Response of a Bent Boom of Variable Cross Section with Link Joints Subjected to General Transient Loads (K. Nagaya)
Materially Nonlinear Large Displacement Analysis of Structures Using Reduced Basis Technique (L.R. Savić)
The Limit Analysis of Spatial Frames (T. Chen, W. Shen)
<pre>Indentation of a Plane Membrane with a Rigid Paraboloid (W.W. Feng)II-139</pre>
Finite Element Modelling of Dynamic Contact Application for Blade Root Damping Estimation (C.V. Ramakrishnan, M.A.W. Usmani)
An Extended Penalty Function Method and its Application to a Virtual Work Principle for Impact Contact of Two Bodies
(N. Asano, K. Funatsu)
On Numerical Methods in Three-Dimensional Theory of Deformable Bodies Stability (A.N. Guz)
A Finite Element Approach for Repeated Elastic-Plastic Rolling Contact (V. Bhargava, G.T. Hahn, C. Rubin)
A Variational Approach to Plates on Elastic Foundations (N.S.V. Kameswara Rao)
Numerical Treatment of Singularities in Elastic Contact Problems and Applications (V.I. Fabrikant, T.S. Sankar)II-195
Finite Element Analysis of Beams on Two-Parameter Tensionless Foundations (Z. Feng)II-205
The Finite Element Analysis of the Contact Problem in Bearing (R. Yu, Y. Liu)II-211

Chapter III Nonlinear Structural Problems

Plastic Deformation of Inhomogeneous Materials with Elliptic Inclusions
(T. Abe, S. Nagaki, N. Nagayama) III-3
A New Analytical Model of Necking Phenomenon (Z-B. Kuang, N. Su, Z-H. Li)
The Plastic Strain Modes and their Application in Elasto-Plastic Analysis (D. Zhu)
A Finite Element Analysis of the Punch Press Forming of Thin Elastic-Plastic Plates (E. Nakamachi)
FE-Modelling of Continuous Casting Problem (P. Koikkalainen, E. Laitinen, S. Louhenkilpi, P. Neittaanmäki, L. Holappa)III-29
On the Relations between the 'Flow' and 'Solid' Approaches in the Metal Forming Process (W-C. Zhang)
Thin Extensional Beams under Large Deformations: Variational Principles, Global Bounds, Stability (H. Bufler, R. Lautenbach, H. Schneider)
Some Considerations on Variational Principle for Elastic Rods with Finite Rotations in Space (M. Iura)III-53
A Practical Large Displacements In-Plane Analysis of Elastic Beams (K.M. Hsiao, F.Y. Hou)
Large Deflection Analysis of Elastoplastic Bending (Z.E. Ma) III-65
Finite Deformation of a Bar Bent through Finite Circular Supports (B.W. Golley)III-71
A Recurrence Formula for Viscoelastic Constitutive Equations
(W.W. Feng) III-77 Effect of Elastic Strains in Steady-State Elasto
Visco-Plastic Flow (Y. Shimazaki, T. Shiojima)III-83
An Approach to the Numerical Analysis of a Generalized Plane Elastica (Z.E. Ma)
Large Deflection Geometrically Nonlinear Behaviour of Laterally Loaded Segmental Plates (A.B. Sabir, H.G.V. Avanessian)
Large Deflection of Plates Using Charge Simulation Method (J. Raamachandran)

A Finite Element Formulation for Geometrically Non Linear Problems Using a Secant Matrix: Application to 3-D Trusses (E. Oñate, J. Oliver, J. Miquel-Canet, B. Suarez) III-109
The Relationship between Twist Axis and Effective Torsional Stiffness of a Motorcycle Frame (M. Raines, G.E. Roe, T.E. Thorpe)
Elatic Buckling of Plates with Reinforced Square Holes (A.B. Sabir, F.Y. Chow)
Collapse, Progressive Buckling and Fatigue Strength of Cylindrical Tubes in Offshore Structures (T. Nomoto, M. Enosawa)
Buckling of Eccentrically Stiffened and Framed Orthotropic Spherical Shells under External Pressure (M. Yamada)
Inelastic Stability Response of Thin Shells (A. Tesár)III-143
Bifurcation and Postbuckling Analysis of Columns with Consideration of Pointwise Elastic-Plastic Deformation History (L. Cheng, W. Yang, K-C. Hwang)
Finite Element Analysis of the Stability of Open Thin-Walled Structure with Diaphragms (X. Yuan, T. Jin, M.X. Liu, L. Li)
Numerical Analyses of Dynamic Contact Buckling Problems Using the Penalty Finite Element Method (Y. Kanto, G. Yagawa)
Reissner-Mindlin Plate Element for Large Deflection Problem (Y. Ueda, H. Murakawa, H. Masuda)
Bifurcation and Post-Bifurcation Phenomena of Elastic-Plastic Circular Tubes Subjected to External Shrinking under Plane Strain Condition (Y.S. Kim, Y. Tomita, A. Shindo)
Contribution to Nonlinear Finite Element Analysis of Structures with Emphasis on Buckling and Post-Buckling Problems (J. Chróścielewski, R. Schmidt)
Numerical Analysis of Post-Buckling Behavior of Elastic Plastic Arches (T. Ito, K. Kawashima)
Large Deformation and Post-Buckling Analyses of Plane and Space Truss Structures: Simplified Finite Element Analysis Considering Member's Buckling (K. Kondoh, K. Tanaka) III-193
Finite Element Analysis of Creep Crack Growth Based on Anisotropic Creep Damage Theory (S. Murakami, M. Kawai, H. Rong)

Computer Simulation of Deformation and Fracture of Small Metal Crystals (M. Doyama, R. Yamamoto)	[1-203
Computational Method of Continuous Dislocations Model (T. Shioya, K. Fujimoto)	II-209
The Statistical Fracture Mechanics Analysis of Spherical Tank Failure Probability (Z. Zhou, X. Lu)	II~215
Modelling of Fracture Processes Occurring in the Focal Zone of a Tectonic Earthquake (A.S. Bykovtsev)	II-221
Chapter IV Material Modeling and Analysis	
Mechanical Sublayer Model for Elastic-Plastic Analyses (T.H.H. Pian)	IV-3
Coupling between Temperature, Stress and Metallic Structures during Phase Transformation and the Analysis of Carburized Quenching of a Steel Gear (T. Inoue, Z.G. Wang)	IV-11
Time Integration of Stiff Inelastic Constitutive Equation (F.G. Kollmann)	s IV-17
Analytical Representation for the Cyclic Stress-Strain Hysteresis Loops of Type 304 Austenitic Stainless Steel (Y. Wada, K. Iwata, K. Aoto, Y. Kawakami)	IV-25
Elastic-Plastic Constitutive Equation Using Non-Orthogona Curvilinear Coordinates and its Application in Numerical Methods (X. Ren)	1 IV-31
A Method to Estimate Isothermal Creep under Arbitrary Uniaxial Stress-Reversals	
(M. Partl, A. Rösli) On the Elastic-Plastic Constitutive Equations in Incremental Form (M. Gotoh)	IV-39
Constitutive Modeling of Cyclic Plasticity Considering Induced Anisotropy (H. Ishikawa, K. Sasaki)	IV-45 IV-51
Finite Element Formulation for an Elasto-Viscoplastic Anisotropic Strain Hardening Material	
Elastoplastic Constitutive Model with a Subloading Surface	IV-57
(K. Hashiguchi)	IV-65

An Integral Representation for Plastic Strain of an Elastic-Plastic Solid (S. Ogawa)	IV-71
Jet Locality as Implied by Body Self-Determinism and	
Continuity (R. Segev, A. Ailon)	IV-77
The Variations of Flow Stress and Coercivity of Dual Phase Steel during the Reverse Flow (M.T. Ma, Z.B. Sun)	IV-83
An Iterative Method for Elastic-Plastic Stress Analysis (T. Miyoshi, K. Kaminishi, S. Kawano, S. Shimizu)	IV-89
Constitutive Modeling under High Temperature and High Strain Rate Loading Conditions (A.M. Rajendran, S.J. Bless)	IV-95
Elaboration of a Constitutive Model of Cyclic Plasticity under Non-Proportional Loading (E. Tanaka, S. Murakami, M. Ooka)	IV-101
Computer-Aided Systematic Formulation of Inelastic Constitutive Equations of Polycrystalline Metals (M. Tokuda, K. Yamada)	IV-107
Finite Element Analysis for Shape Memory Alloy (E. Tachibana, M. Nishikawa, K. Watanabe)	IV-113
The Prediction of Transient Responses of Spinal Motion Segments Using Finite Elements Based on Porous Medium Theory (I.S.S. Wu. J.C. Huang, T.M. Lee, B.R. Simon)	IV-119
(J.S.S. Wu, J.C. Huang, T.M. Lee, B.R. Simon) Axial Cyclic Hardening Behavior of Metallic Materials under a Constant Shear Stress (M-C. Yip, C. Yu)	IV-125
Constitutive Equations of Arterial and Ventricular Wall Tissues Based on Pressure-Volume Relations	IV-131
(H. Abé) On the Simulation of Respiratory Dynamics (Y. Seguchi, Y.C. Fung, H. Nagatani)	
An Analysis of Refractive Surgery by the Finite Element Method (M. Bercovier, K. Hanna, F. Jourve)	IV-143
Constitutive Law of the Arterial Wall and Stress Distribution	17 113
(K. Takamizawa, K. Hayashi)	IV-149
Finite Element Method (K.P. Rao)	IV-155
Stability Analysis of Composite Plates (O.O. Ochoa, F. Kozma, J.J. Engblom)	IV-161
Stress Analysis of FRP Bonded Structure and its Considerations (J. Oda. M. Ushiroji)	IV-167

Microscopic Stress Analysis by 3-D FEM of Twill Woven Fabric Composites (T. Yoshino, T. Ohtsuka)	IV-173
On Load Capability of Complicated Composite Laminated Structure (C. Guan, H. Chen)	IV-179
Mathematical Software for Experimental Methods of Ceramics Investigations (G.A. Gogotsi, Y.L. Groushevsky)	IV-185
Transient Response of Cross-and-Angle-Plied Composite Plates due to Transverse Loading (J.J. Engblom, N.P. Fox, O.O. Ochoa)	IV-191
On Some Approaches to Numerical Solution of Linear and Nonlinear Boundary Value Problems of the Theory of Layered Anisotropic Shells	TV 107
(Y.M. Grigorenko)	IV-197
Fiber Composites (C.C. Chamis)	IV-203
Laminated Composite Plates (J.N. Reddy)	IV-213
NDE of FRP Composites Using Acousto-Ultrasonic Technique	
(V.K. Srivastava)	IV-225
Composite Specimen by FEM (T.H. Mao)	IV-231
Interlaminar Stresses Analysis in Symmetric Composite Laminates under Bending (L.Ye, B-X. Yang)	IV-237
Analysis and Calcuation of Stresses and Displacements in Layered Elastic Systems	
(K. Wang) An Endochronic Model for Concrete with Intrinsic Time	IV-243
(K. Vajarasathira, M. Yener)	IV-249
Verification of Plasticity Based Models for Concrete (K. Vajarasathira, M. Yener)	IV-255
A Constitutive Modeling of the Mechanical Behavior of a Reinforced Pier Involving Nonlocal Interactions (A.Ü. Erdem)	IV-261
A Two-Surface Plastic Model for Concrete and Geomaterials (J.C. Chern, F.B. Lin, A.H. Marchertas)	IV-267
(J.C. Chern, F.B. Lin, A.H. Marchertas) Finite Element Analysis of Seismic Response of Reinforced Concrete Walls	14 201
(A. Mihanović, B. Jaramaz, F. Damjanić)	IV-273
Strength Criteria for Concrete (C.L.D. Huang, L. Cui)	IV-279

Structural Evaluation of Cold-Formed Sheet Steel Concrete Reinforcement Using Finite Elements and Tests (F.A. Thulin, Jr., J.D. Brock)	IV-285
Non-Linear Rheological Model of Concrete (J. Szarliński, J. Krok, Z. Kordecki)	IV-293
Deep R/C Beams Subjected to Cyclic Loading (M. Yener, K. Vajarasathira)	IV-299
Chapter V Fracture Mechanic	
Fracture Process Zone Models for Concrete and Ceramics (A.S. Kobayashi, J.J. Du)	V-3
The C-Integral: A Path Independent Integral for Computing Singularity Participation at a Butt Joint (M. Okajima, G.B. Sinclair)	V-11
A Hybrid Finite Element Algorithm by Virtual Work Principle and its Application in Fracture Mechanics	V-11
(J.Y. Zhang, T.R. Hsu)	V-17
Bent Crack in Three Points Bend Specimens (W. Hong, C. Wang)	V-25
The Calculation and Analyses of the Influence of Compression Loads for Fatigue Crack Propagation (J-X. Nie, S.Li)	V-31
Analytical Solution on the 3D Stress Concentration Problem of a Plate with a Circular Hole under	
Uniform Tension at Infinity (T. Kawai, T. Endoh)	V-37
Analysis of Stress Intensity Factors for Surface Cracks Subjected to Arbitrarily Distributed Stresses (M. Shiratori, T. Miyoshi)	V-43
Three Dimensional Stress Distribution and Fracture Mechanics of Carbon/Epoxy Composite Laminates	77. 40
(K. Kageyama, M. Kikuchi, T. Kobayashi, T. Nishio) Conical Crack Problem in Semi-Infinite Media with	V-49
Stress-Free Boundary Conditions (O.S. Yahsi, L. Parnas)	V-57
The Generation of Crack-Tip Element Using Iteration Method (C.G. Go, M.S. Wu)	V-63
Analyses of Stress Intensity Factor for Three-Dimensional Cracked Body by the Variational	, 55
Method (S. Wu. X. Zhang, O. He)	V-67

Finite Element Analysis of Surface Cracks by the	
Supercomputer (T. Miyoshi, M. Shiratori, Y. Yoshida)	V-73
Finite Element Analysis of Transient Thermoelastic Fracture Problems (W-H. Chen, K. Ting)	V-79
Proportional Extrapolation Techniques for Determining Stress Intensity Factors for Axisymmetric Cracked Bodies	
(Y. Itoh, S. Nakamura, T. Kako)	V-87
On a Conventional Stress Intensity Factor Calculation Technique of Surface Cracks (M. Asano, K. Suzuki, J. Fukakura, H. Kashiwaya)	V-93
Stress Intensity Factors Using Simple Strain-Based Finite Elements	
(B.B. Sabir)	V-99
On the Improvement of the Boundary Element Analysis for the Crack Problems	17 107
(H. Kisu, R. Yuuki, T. Matsumoto)	V-107
with Optimum Cracks Number (M.Y. Rajab)	V-113
On Three Dimensional Generalized J-Integral (X. Zhang, K. Xia)	V-117
Some Consideration on Mechanism of Ductile Fracture: Behavior of CT-specimen near J=J _{IC} (H. Miyamoto, M. Kikuchi, H. Yabu, A. Fujii, H. Okada)	V-123
Elasto-Plastic Analysis of Stress and Strain Concentration by the Combination of Body Force Method and Finite Element Method	
(Y. Murakami, Y. Uchiyama)	V-129
Evaluation of Nonlinear Fracture Mechanics Parameter at Elevated Temperature by Finite Element Analysis (T. Shimakawa, Y. Takahashi, K. Kitao, Y. Sato,	
Y. Wada, A. Yoshitake, M. Kitagawa, Y. Asada) Elasto-Plastic Problem for a Cracked Plate	V-135
(A.V. Boiko)	V-141
Finite Element Computation of J and T for Cracks in Elasto-Plastic Materials (P. Jamet, T. Charras, A. Combescure)	V-147
Finite Element Analysis of Crack-Tip Opening:	V - 14 /
A Simulation of Vertex Blunting (H. Kitagawa, S. Komeda)	V-157
The Analysis of Thermal Stress Crack Problem in Bi-Material Bodies Using the J-Integral	
(S.I. Chou, M.A. Baeder)	V-163

Analyses of Elastic-Plastic and Creep Crack Parameters by the Crack Model Considering the Discontinuity in the Cracked Plane	
(K. Watanabe, H. Azegami, Y. Sato)	V-169
Numerical Analysis of Crack Tip Blunting in a Ductile Material under Small-Scale Yielding Subjected to Mixed Mode Loading	
(M. Saka, S. Tanaka, H. Abé)	V-175
Surface Crack Modeling with the Boundary Element Method (T.A. Cruse, E.Z. Ploch, S. Raveendra)	V-181
Theoretical Analysis of Fracture Criterion for Stainless Steel Pipe with Circumferential Through-Wall Crack (K. Kashima, Y. Takahashi)	V-193
Elastic-Plastic Failure Analysis for a Rotor Disk with a Surface Crack	
(S. Kanno, S. Sakata, T. Shimizu)	V-199
Analyses of Nonlinear Fracture Mechanics Parameters of Through-Wall Cracked Piping (T. Watanabe, S. Ueda, K. Tagata, G. Yagawa, S. Miyazono, N. Miyazaki)	V-205
	V-203
The Elastic-Plastic Fracture Mechanics Analysis for Surface Cracked Spherical Pressure Vessel (N. Jie)	V-213
Analysis of Mixed-Mode Crack Propagation Using the	
Boundary Integral Method (A. Mendelson, L. Ghosn)	V-219
Singularity Fields of Stress and Strain near Crack Tip for Combined Mode Crack (T-C. Wang)	V-227
-	V - Z Z /
The Calculation of Mixed Mode Stress Intensity Factors for Reissner's Plate Using Hybrid Method (Y. Li, C. Liu)	V-235
Computational Crack Path Prediction Applied to Crack	
Arrestability by a Circular Hole	
(Y. Sumi)	V-241
The Effect of Inclined Crack Tip Shapes on the Stress Fields in Flat Plates	
(M-L. Du, G-C. Li)	V-247
The Calculation of $K_{\rm I}$ and $K_{\rm II}$ for a Cracked Body Subjected to Composed Loads by Boundary Collocation Method	050
(P. Hao)	V-253
Computing and Testing for Mixed Mode Thresholds on Bending Specimens (D. Lin, Q. Yang, H. Li)	V-259
(~- ~, &. rang, m. mr)	v 2 J 3
Mixed Mode Stress Intensity Factor Solutions for Offshore Structual Tubular Joints by Three Dimensional Finite Element Analysis	
(H.C. Rhee, M.M. Salama)	V-265

Computational Studies on New Types of Path Independent Integral in Dynamic Fracture Mechanics (T. Nishioka, S.N. Atluri)	V-273
Finite Element Analysis of Dynamic Stress Intensity Factor of Rapidly Propagating Crack Using Ĵ-integral (S. Aoki, K. Kishimoto, M. Sakata)	V-279
Dynamic Fracture Analysis of HSST Crack Run-Arrest Experiments with Nonisothermal Wide Plates (B.R. Bass, C.E. Pugh, D.J. Naus)	V-285
Development of a Method to Measure Dynamic J Integral in Elasto-Plastic Materials (H. Homma)	V-291
Energy Dissipation in Finite Element Modelling of Dynamic Mixed-Mode Crack Propagation (S. Valliappan, V. Murti)	V-297
A Numerical Investigation of Unsteady Crack Growth in Power-Hardening Materials (Y. Dai, K-C. Hwang)	77 20E
Dynamic Collapse Analysis for Pressurized Pipes Containing Axial Through-Wall Cracks	V-305
(N. Chiba, K. Hasegawa, T. Shimizu) The Development of Fracture Mechanics Numerical Methods in the USSR	V-313
(V.Z. Parton, V.G. Boriskovsky)	V-319
for the Assessment of the Influence on Human Beings (B. Zastrau)	V-327
Discretization and Comparison with Experiment (A. Machova, J. Zemankova)	V-333
Electric Potential CT Method Based on BEM Inverse Analyses for Measurement of Three-Dimensional Cracks (S. Kubo, T. Sakagami, K. Ohji)	V-339
Energy Release Rates for the Propagating Crack and the Surrounding Damage (M.H. Bessendorf, A. Astrouski)	
A New Model for the Cumulative Damage (CD) in the Fatigue and the Fatigue—Creep with Unnotched $(\pm 45^{\circ})_{2s}$ Carbon/Epoxy	V-345
(J.R. Lee, F.X. de Charentenay) A Two-Dimensional Model for Crack Closure in Bending of Plates	V-351
(S. Viswanath, M.V.V. Murthy, A.V. Krishna Murty, K.P. Rao)	V-357
On Stable Crack Growth at Large Scale of Yielding (P. Ståhle)	V-365
A Rapid Experimental Method for the Fatigue Crack Growth Threshold	
(D. Lin, Q. Yang, H. Li)	V-371

The Crack Propagation and Life Estimation of Turbine Disk (Q. Hong)	V-377
A New Endochronic Elasto-Plasticity Approach for Fatigue Crack Growth (O. Watanabe, S.N. Atluri)	V-387
Finite Element Analysis of a Cyclically Loaded Notched Bar Using Constitutive Models Based on the Cyclic Nonhardening Region (M. Šatra, N. Ohno)	V-395
Stereofractographic Studies of a Fatigue Crack Propagation in a Low-Carbon Steel (V.A. Stepanenko)	V-401
Fatigue Analysis of Fixed Offshore Structures Subjected to Random Waves (C.B. Yun, J.S. Ryu)	V-407
Fatigue Crack Growth in Commercial Steel (Ö.G. Bilir, F. Haznedar)	V-413
Prediction of Crack Constant in Smooth Materials (R. Yu, L. Cheng)	V-419

Author Index