CONTENTS

PREFACE

SECTION 1 CREEP MECHANISMS

A.S. ARGON, F. PRINZ and W.C. MOFFATT Dislocation creep in subgrain-forming pure metals and alloys	1
D. CAILLARD and J.L. MARTIN A microscopic approach of the aluminium creep rate at intermediate temperature	17
S. KARASHIMA Deformation and dislocation behaviour in metals and single-phase alloys at elevated temperatures	31
A. YASUDA, H. OIKAWA and S. KARASHIMA Recovery and work hardening during high temperature creep of fcc alloys of low stacking fault energy	47
H. YOSHINAGA Work hardening and recovery rates of internal stress in pure metals and alloys	59
T.G. LANGDON and P. YAVARI The effect of instantaneous strain on creep measurements at apparent constant structure	71
R.S. POLVANI, B.W. CHRIST and E.R. FULLER, Jr. Beryllium microdeformation mechanisms	85
A. ARIELI and A.K. MUKHERJEE On the power-law breakdown during high temperature creep of fcc metals	97
H. OIKAWA Deformation mechanism diagrams - Modifications for engineering applications	113
P.R. HOWELL and G.L. DUNLOP The role of grain boundary dislocations in high temperature deformation	127
T.G. LANGDON Current problems in superplasticity	141

SECTION 2 DEFORMATION PROCESSES

IN PARTICLE - STRENGTHENED ALLOYS

M. McLEAN and P.N. QUESTED Creep of directionally solidified superalloys and eutectic composites	157
H.E. EVANS and G. KNOWLES A unified view of steady-state creep in pure materials and particle-strengthened alloys	169
R.A. STEVENS and P.E.J. FLEWITT A theoretical consideration of the microstructural origins of friction stress in a cast γ '-strengthened superalloy	187
E. KREMPL The role of aging in the modelling of elevated temperature deformation	201
D.D. PEARSON, B.H. KEAR and F.D. LEMKEY Factors controlling the creep behaviour of a nickel-base superalloy	213

SECTION 3 CREEP FRACTURE PROCESSES

B.F. DYSON A unifying view of the kinetics of creep cavity growth	235
R.H. BRICKNELL and D.A. WOODFORD Cavitation in nickel during oxidation and creep	249
T. WATANABE Grain boundary sliding and fracture of metal bicrystals at high temperatures	263
T. CHANDRA and I. UEBEL Cavitation and fracture of microduplex CuZnCo and CuZnCr during superplastic deformation	277
I-W. CHEN and A.S. ARGON Nucleation and growth of intergranular cavities during creep of Type 304 stainless steel	289

R.W. EVANS and B. WILSHIRE The role of grain boundary cavities during tertiary creep	303
D.S. WILKINSON Models for intergranular creep crack growth by diffusion	315
J.L. BASSANI Creep crack extension by grain-boundary cavitation	329
L. SEAMAN, D.R. CURRAN and D.A. SHOCKEY Development of a microfracture model for high rate tensile damage	345

SECTION 4 CREEP AND FRACTURE

OF CERAMICS

M.H. LEWIS, B.S.B. KARUNARATNE, J. MEREDITH and C. PICKERING Mechanisms of creep deformation and fracture in single and two-phase Si-Al-O-N ceramics	365
A. DJEMEL, J. CADOZ and J. PHILIBERT Deformation of polycrystalline α -SiC	381
T.E CHUNG and T.J. DAVIES Pore behaviour in fine grained UO $_2$ during superplastic creep	395
A.G. EVANS and C.H. HSUEH Creep fracture in ceramic polycrystals	409

SECTION 5 MATERIALS BEHAVIOUR

AT ELEVATED TEMPERATURES

J.K. TIEN, D.E. MATEJCZYK, Y. ZHUANG and T.E. HOWSON 433 Anelastic relaxation, cyclic creep and stress rupture of γ' and oxide dispersion strengthened superalloys

C.Y. BARLOW and B, RALPH 447 Microstructural aspects of the creep of alloys based on Nimonic 80A

J. BRESSERS, O. Van der BIEST and P. TAMBUYSER Analysis of the causes of scatter in stress rupture properties of a nickel-base superalloy	461
K.R. WILLIAMS, R.S. FIDLER and M.C. ASKINS The effect of secondary precipitation of the creep strength of 9CrlMo steel	475
K.R. WILLIAMS Examination of the creep behaviour of microstructurally unstable ferritic steels	489
C.D. HAMM and R. PILKINGTON Cavitation and creep crack growth in low alloy steels	503
H.J. WESTWOOD and W.K. LEE Creep-fatigue crack initiation in $\frac{1}{2}$ Cr-Mo-V steel	517
D.P. POPE and D.S. WILKINSON Grain boundary impurity effects on the creep ductility of ferritic steels	531
R.J. BROWNE, D. LONSDALE and P.E.J. FLEWITT The role of stress state on the creep rupture of 1% Cr $\frac{1}{2}\%$ Mo and 12% Cr1%MoVW tube steels	545
D.W.A. REES Effects of plastic prestrain on the creep of aluminium under biaxial stress	559
F.R. MONTGOMERY The application of the J-integral to small specimens of ductile material to be exposed to high temperatures and high levels of irradiation	573

SECTION 6 DESIGN AND PERFORMANCE

OF COMPONENTS AND STRUCTURES

E.T. ONAT Representation of inelastic behaviour	587
D.A. WOODFORD Creep damage concepts and applications to design life prediction	603

B. NEUBAUER Criteria for prolonging the safe operation of structures through the assessment of the onset of creep damage using nondestructive metallographic measurements	617
M.C. COLEMAN and J.D. PARKER Deformation in 2CrMo- $\frac{1}{2}$ CrMoV pressure vessel weldments at elevated temperature	629
R.J. BROWNE, B.J. CANE, J.D. PARKER and D.J. WALTERS Creep failure analysis of butt welded tubes	645
B.G. IVARSSON and R. SANDSTROM Creep of butt-welded tubes	661