Contents

Deformation-1

Effects of Heat Treatment on Acoustic Emission Peaks in Precipitation Strengthened Alloys C. R. Heiple and S. H. Carpenter	1
Acoustic Emission Generated during Plastic Deformation of 5052 and 2024 Aluminum Alloys H. Kato and T. Tozawa	11
Effects of Heat-Treatment on Pre-Yield Burst Emissions of A533B Steel H. B. Teoh, I. Roman, and K. Ono	21
Acoustic Emission and Finite Element Analyses of Progressive Failure Processes in Brittle Materials M. Satake, S. Niiseki and H. Nishimoto	31
Non-Metallic Materials	
 Evaluation of Damage Growth in Composite Materials by Acoustic Emission Energy Measurement	41
The Behaviour of Acoustic Emission from GRP upon Reloading H. Tao and F. Gao	50

Non-Metallic Materials

Acoustic Emission Researches for the Application to Concrete Structure Monitoring D. Bozzetti, E. Fontana, F. Tonolini, and G. Villa	67
Determination of Fracture Toughness of Granitic Rock by Means of AE Technique <i>T. Hashida, S. Yuda, K. Tamakawa, and H. Takahashi</i>	78
Acoustic Emission during the Process of Crack Growth in Si ₃ N ₄ and Al ₂ O ₃ Ceramic Materials <i>H. Iwasaki, M. Izumi, and K. Ohta</i>	90

Stress Corrosion Cracking and Fatigue

Acoustic Emission in Fatigue Test of Nodes for Offshore Platforms
and P. Brandi
Acoustic Emission Characteristics during Fatigue Test of
a 60kg/mm ² Grade Steel108
K. Yoshida, J. Takatsubo, and H. Yokogawa
Effect of Environments, Mechanical Conditions, and Materials
Characteristics on AE Behavior During Corrosion Fatigue
Processes of Austenitic Stainless Steel
S. Yuyama, T. Kishi, and Y. Hisamatsu
Acoustic Emission During Environmental Cracking of
High Strength Titanium Alloy
S. Yuyama, T. Kishi, Y. Hisamatsu, and T. Kakimi

Instrumentation and Wave Propagation

Research on Multi-Channel Acoustic Emission Source Location System and the Location Technique	
Y. Ma, Y. Jiang, Z. Liu, J. Zhang, H. Bai, X. Ge, J. Guo, X. Jia, and F. Xu	
Real-Time AE Spectrum Analyzer Using a New Pipelined FFT Processor	
H. Niitsuma, N. Chubachi, M. Kameyama, T. Higuchi, and J. Konno	
Sources of Error in AE Location Calculations	
Characteristics of AE Propagation on a SUS 304	
'Tee' Piping	
Experiment on Propagation Characteristics of Leakage Sound:	
Attenuation Rate	
Special Lecture	
Transient AE Waves in Elastic Plates	
Wave Analysis	
Observations on AE from Large Crack Jumps	
Quantitative Characterization of Dynamic Fracture Process by Means of Acoustic Emission Source Wave Analysis	

Characterization of Emission Mechanisms during Fatigue	
Crack Propagation by AE Waveform Analysis	218
Y. Mori, Y. Obata, and K. Aoki	
The Waveforms of Acoustic Emission Due to Microcracking	
Near a Macro Crack	225
K. Ohno, K. Hirashima, and J. D. Achenbach	

Deformation-2

Acoustic Emission Behavior of Nickel During Tensile Deformation SY. S. Hsu and K. Ono	235
Acoustic Emission Characteristics of an Amorphous Metal during Tensile Testing K. Ueda, S. Sekiya, and T. Sugita	244
Acoustic Emission Generated during the Multiple Compressive Deformation of Polycrystalline Zinc <i>C. M. Chen and S. H. Carpenter</i>	254
Computer Simulation of Acoustic Emission during the Yield Process of a Dispersion Hardened Alloy J. Masuda	265
Acoustic Emission during the Plastic Deformation Pure Iron and 3%Si-Fe	275

Fracture-1

Application of Acoustic Emission in Determining Jic Value in Steel 285 J. Peng and S. Qi

Application of Radiation Pattern of Acoustic Emission in	
Determination of Elastic-Plastic Fracture Toughness	295
K. Kuribayashi and T. Kishi	

In Monitoring of the Crack Initiation Process Using an Acoustic	
Emission Frequency Analysis	13
K. Takashima, Y. Higo, and S. Nunomura	
AE and Separations of SS41 or SM50 Steel	2
T. Ookouchi, H. Takahashi, H. Niitsuma, K. Ichida,	
and T. Yoshida	

Advanced Application

Advances in Acousto-Ultrasonic Inspection of Composites and Adhesive-Bonded Structures J. M. Rodgers	3	322
AE Technology as a Diagnostic and Monitoring Technique for Superconducting Magnets O. Tsukamoto and Y. Iwasa	3	332
AE Characteristics during Growth of Electrical Tree in a Plastic Insulating Material	3	345
Adaptive Spot Weld Feedback Control Loop via Acoustic Emission S. J. Vahaviolos and S. J. Slykhous	3	356

Fracture-2

Acoustic Emission Monitoring during Plastic Deformation and Cracking Process of D6AC Steel and Commercial-Pure Ti	366
Acoustic Emission Characteristics of Low Toughness Steel in Large Specimen Tensile Test A. Kannō, M. Sakaki, T. Watanabe, and T. Fuji	376
An Acoustic Emission Study on Brittle-Ductile Cracking of AISI 4340 Steel A. Nozue and T. Okubo	388

Transformation

Acoustic Emission Analysis of the Martensitic $\gamma \rightarrow \alpha$ - Transformation of Fe-30 Ni	396
K. Wolitz and G. Frommeyer	
Acoustic Emission during the Martensite Transformation in Austenite Stainless Steel Single and Polycrystals	405
Simultaneous Measurements of Acoustic Emission and Electrical	
Resistivity of Fe-Cr Base Alloys during Thermal Cyclings K. Shinohara, T. Seo, and T. Yoshioka	413
Sensor Calibration	
An Evaluation of the Breaking Pencil Lead Calibration Technique B. R. A. Wood and R. W. Harris	423
Wide Band Acoustic Emission Sensors Made of a Tapered Piezo- electric Ceramic Y. Tomikawa, Y. Itoh, H. Yamada, and M. Onoe	432

Self-Reciprocity Calibration of Acoustic Emission Transducers	
for Rayleigh Surface Wave	440
M. Onoe and H. Yamada	

Calibration of Acoustic Emission Transducers: Comparison of	
Two Methods	448
F. R. Breckenridge, T. Watanabe, and H. Hatano	

Monitoring Technology

Acoustic Emission Monitoring of Steam Turbines	 459
A. F. Armor and L. J. Graham	

A Model for Fracture Estimation in Structure by AE Monitoring	
and Its Simulation Results	468
K. Yamaguchi, H. Fujita, and H. Suzuki	

Journal Bearing Diagnosis with Acoustic Emission Technique 491 I. Sato, T. Yoneyama, S. Sasaki, T. Suzuki, T. Inoue, T. Koga, and K. Ikeuchi

Pressure Vessels

A New Assessment Parameter "H" in Measuring the Crack Fracture
Initiation of a Cracked Structure by Using the Acoustic Emission
Technique
Z. He
Experience in Acoustic Emission Examination of Pressure Vessels
during Hydrotests
E. Fontana, C. Panzani, F. Tonolini, and G. Villa
The Characteristics of Acoustic Emission for Glass Fiber Wound
Composite Pressure Vessels and the Approach to Predicting
Their Burst Pressure
Y. Liu, G. Lei, L. Yu, Z. Yuan, C. Li, and J. Li
Evaluation of Structural Integrity by Acoustic Emission and
Fracture Mechanics Techniques
M. A. Khan, T. Shoji, and H. Takahashi
• •