Contents

1 Int	roduction	•	1
1.1	The Origin of Stresses	•	1
1.2	Methods of Measuring Residual Stresses		4
1.3	Some Examples of Residual Stresses		7
Refe	rences	. 1	2
	,		
2 Fu	ndamental Concepts in Stress Analysis	. 1	3
2.1	Introduction	. 1	3
2.2	Definitions	. 1	3
2.3	Stress and Strain.		4
2.4	Forces and Stresses		5
2.5	Displacements and Strains	. 1	7
2.6	Transformation of Axes and Tensor Notation		0
2.7	Elastic Stress-Strain Relations for Isotropic Materials		5
2.8	Structure of Single Crystals	. 2	8
2.9	Elastic Stress-Strain Relations in Single Crystals	. 3	2
2.10	Equations of Equilibrium	. 3	7
	Conditions of Compatibility		8
	Basic Definitions in Plastic Deformation		9
	Plastic Deformation of Single Crystals		1
	Deformation and Yielding in Inhomogeneous Materials		4
	lems		5
Bibli	ography	. 4	6
3 Ar	nalysis of Residual Stress Fields Using Linear Elasticity Theory	. 4	.7
3.1	Introduction		7
3.2	Macroresidual Stresses		7
3.3	Equations of Equilibrium for Macrostresses		1
3.4	Microstresses		2
3.5	Equations of Equilibrium for Micro- and Pseudo-Macrostresses .		4
3.6	Calculation of Micro- and PM Stresses		6
3.7	The Total Stress State in Surface Deformed Multiphase Materials		51
3.8	Macroscopic Averages of Single Crystal Elastic Constants		2
3.9	The Voigt Average		3
3.10			5
3.11	Other Approaches to Elastic Constant Determination		6
3.12	Average Diffraction Elastic Constants	. 6	9

Contents

	mary	
Refe	prences	73
4 Fu	indamental Concepts in X-ray Diffraction	75
4.1	Introduction	75
4.2	Fundamentals of X-rays	
4.3	Short-wavelength Limit and the Continuous Spectrum	76
4.4	Characteristic Radiation Lines	77
4.5	X-ray Sources	
4.6	Absorption of X-rays.	
4.7	Filtering of X-rays	84
4.8	Scattering of X-rays	84
4.9	Scattering from Planes of Atoms	86
4.10		87
4.11	Experimental Utilization of Bragg's Law	89
	Monochromators	90
4 1 3	Collimators and Slits	90 91
4 1 4	Diffraction Patterns from Single Crystals	93
415	Diffraction Patterns from Polycrystalline Specimens	93 94
4 16	Basic Diffractometer Geometry	94 95
4.17	Intensity of Diffracted Lines for Polycrystals	93 97
4 18	Multiplicity	9/
<i>4</i> .10	Lorentz Factor	98 08
4 20	Absorption Factor	98 100
4 21	Temperature Factor	100
4.21	Temperature Factor	103
4.22	X-ray Detectors	103
4.23	Deadtime Correction for Detection Systems	108
4.24	Total Diffracted Intensity at a Given Angle 2θ	109
4.25	Depth of Penetration of X-rays	110
4.20	Fundamental Concepts in Neutron Diffraction	111
	Scattering and Absorption of Neutrons	
	lems	
BIDII	ography and References	116
5 De	etermination of Strain and Stress Fields by Diffraction Methods	117
	Introduction	
5.2	Fundamental Equations of X-ray Strain Determination	117
5.3	Analysis of Regular "d" vs. $\sin^2 \psi$ Data	119
5.4	Determination of Stresses from Diffraction Data	
5.5	Biaxial Stress Analysis	122
5.6	Triaxial Stress Analysis	125
5.7	Determination of the Unstressed Lattice Spacing	126
5.8	Effect of Homogeneity of the Strain Distribution and Specimen	
	Anisotropy	130
5.9	Average Strain Data from Single Crystal Specimens	131

VIII

Contents

5.10	0 Interpretation of the Average X-ray Strain Data Measured from					
	Polycrystalline Specimens					
5.11	Interpretation of Average Stress States in Polycrystalline Specimens . 137					
5.12	2 Effect of Stress Gradients Normal to the Surface on d vs.					
	$\sin^2\psi$ Data					
5.13	Experimental Determination of X-ray Elastic Constants 14					
5.14	Determination of Stresses from Oscillatory Data					
5.15	Stress Measurements with Neutron Diffraction					
5.16	Effect of Composition Gradients with Depth					
5.17	X-ray Determination of Yielding					
	Summary					
	lem					
Refe	rences \ldots					

	perimental Errors Associated with the X-ray Measurement of sidual Stress
6.1	Introduction
6.2	Selection of the Diffraction Peak for Stress Measurements
6.2 6.3	Peak Location
0.5	6.3.1 Half-Value Breadth and Centroid Methods
	6.3.2 Functional Representations of X-ray Peaks
	6.3.3 Peak Determination by Fitting a Parabola
<i>(</i>)	6.3.4 Determination of Peak Shift
6.4	Determination of Peak Position for Asymmetric Peaks
6.5	Statistical Errors Associated with the X-ray Measurement of
	Line Profiles
6.6	Statistical Errors in Stress
	6.6.1 The $\sin^2\psi$ Technique
	6.6.2 Two-Tilt Technique
	6.6.3 Triaxial Stress Analysis
	6.6.4 Statistical Errors in X-ray Elastic Constants
6.7	Instrumental Errors in Residual Stress Analysis
	6.7.1 Variation of the Focal Point with θ and ψ
	6.7.2 Effect of Horizontal Divergence on Focusing
	6.7.3 Effect of Vertical Beam Divergence
	6.7.4 Effect of Specimen Displacement
	6.7.5 Effect of ψ -axis not Corresponding to the 2 θ -axis
	6.7.6 Error Equations for the ψ -Goniometer
	6.7.7 Effect of Errors in the True Zero Position of the w-axis 202
	6.7.8 Alignment Procedures
6.8	Corrections for Macrostress Gradients
6.9	Corrections for Layer Removal
6.10	
Prob	•
	rences

7 Th	e Practi	cal Use of X-ray Techniques		•		•	•	•	211
7.1	Introdu								
7.2	The Use	e of Ordinary Diffractometers							211
7.3	Softwar	e and Hardware Requirements							212
7.4	Availab	le Instruments							213
7.5	Selected	Applications of a Portable X-ray Residual Stre	SS	Uı	nit				
		P. Évans)							214
Refe		· · · · · · · · · · · · · · · · · · ·							
8 Th	e Shape	of Diffraction Peaks – X-ray Line Broadening .		•	•	•	•	•	230
8.1	Introdu	ction							230
8.2		rections							
8.3		Analysis of Peak Broadening							
			•	•	•	•	•	·	,
Appe	endix A:	Solutions to Problems		•	•	•	•		248
Appe	ndix B								252
B.1		ction							
B.2	The Ma	rion-Cohen Method				÷			252
B.3		lauk Method (Oscillation-free Reflections)							
B.4		s of Peiter and Lode							
B .5	Use of]	High Multiplicity Peaks							257
		· · · · · · · · · · · · · · · · · · ·							
Appe	endix C:	Fourier Analysis	•	•	·	•	•	•	259
Appe	endix D:	Location of Useful Information in "Internation	al	Ta	ıbl	es			
		for Crystallography"							266
A									
Appe	enaix E:	Values of G_x for Various Materials							0.07
		(By Dr. M. James)	٠	·	•	·	·	•	267
Appe	endix F:	A Compilation of X-ray Elastic Constants							
		(By Dr. M. James)							270
Refe	rences.	· · · · · · · · · · · · · · · · · · ·							
Subj	ect Index								273

Х