	ΧI
CONTENTS	
PREFACE	٧
ORGANIZATION COMMITTEE	IX
GENERAL INTRODUCTION	
Energy-related basic ceramic research W.D. Kingery	2
SECTION A. ENERGY IN CERAMICS MANUFACTURING PROCESSES	
Sub-Section A1. Rationalization of thermal energy use	
Refractory and insulating materials	
"Welding" of basic refractories — an alternative to high-temperature brick firing F. Nadachowski and J. Sborowski	13
New methods of designing progressive kiln aggregates H. Širhal	27
Ceramic fibre — continued development generates direct methods of reduction of thermal energy utilization in the manufacture of ceramics W.B. Christian	39
Ceramic fiber — the energy saver for the ceramic industry A.L.D. Noppen	49
Possibility of using chemically obtained amorphous SiO_2 for refractories in steel industry M. Gašić, D. Kićević, N. Rajković and P. Martinović	58
New generation of high efficiency kiln furniture for present and future ceramic industry	
Z. Stavrić	69
heat storage furnaces H. Palmour, III, B.M. Gay and I.H. Redeker	80
Fine ceramics	
The thermal stresses and fast firing of ceramic wall tiles V. Lach and J. Široký	100

composition and this	
compositions or additives	
D. Alvarez Estrada	111
Wollastonite based porcelains of low firing temperature	
J. Gonzalez-Peña, C. Coma Diaz and D. Alvarez Estrada	125
Reduction of firing temperature in the fabrication of ceramic products	
through the use of sericitic clays	
J. Espinosa De Los Monteros, S. De Aza, D.A. Estrada, R. Martinez and	
F. Morales	138
Fast firing of alumina ceramics	
M.P. Harmer, E.W. Roberts and R.J. Brook	155
Honeycomb structured PTC-ceramics heating element	
S. Wada	163
Techniques and equipments	
Energy in sanitary ware manufacturing process	
M. Settonce	175
Economy in fuel consumption of bricks manufacturing plants	
E. Facincani	190
F-1 roller kilns — fast firing and energy conservation	
A. Saino	203
The SIRO ₂ sensor: development, properties and applications	
M.J. Bannister, W.G. Garrett, K.A. Johnston, N.A. McKinnon, R.K. Stringer and H.S. Kanost	211
Mathematical description of the process of compacting ceramic powders	000
S. Gasiorek, K. Maciejko and J. Szatkowska	223
Relationship between fan capacity and heat consumption when drying	
ceramic goods D. Stahl	237
A method for the optimalization of porcelain drying and firing processes	05-
V. Hanykyr and J. Havrda	252
The fast drying of ceramics as a method for reducing energy consumption	
A. Smólski	266

Sub-Section A2. Alternative energy sources, and the use of industrial by-products	
Degradation of refractory ceramics and insulations by impurities in fuels alternate to natural gas V.J. Tennery, G.C. Wei, A.E. Pasto and J.I. Federer	281
Indirect type solid fuel heat generator for ceramic driers A. Smólski	295
A mathematical model for the heat treatment of ceramic products in fossil fuel fired continuous kilns P.G.M. Nievergeld	20E
High quality thermal insulation materials from power station ash	305
A. Briggs	318
Utilization of fly ash in Australia J. Beretka	335
Sintering of dense ceramic materials at temperatures below 1000°C using waste glass as a raw material J. Wiegmann	347
Microspheres — their formation and application in the bulk production of thermoinsulating materials with phosphate binders S. Pawlowski, A. Gierek, J. Hycnar and S. Serkowski	360
North Carolina peat as an alternate fuel source for ceramic firing B.M. Gay	374
SECTION B. CERAMICS IN ENERGY PRODUCTION AND CONVERSION SYSTEMS	
Sub-Section B1. Ceramics as advanced heat engine components	
Some aspects of basic research	
Transport mechanisms through oxidic surface layers on silicon ceramics J. Schlichting	390
Phase equilibria in the Si,Al,Be/C,N system G. Schneider, L.J. Gauckler and G. Petzow	399

Self-diffusion in alpha and beta silicon carbide J.D. Hong, M.H. Hon and R.F. Davis	409
A microscopic study of the morphology of hot-pressed eta' -sialon materials M. Kuwabara, M. Benn and F.L. Riley	422
Formation of ternary Si-O-C phase(s) during oxidation of SiC R. Pampuch, W. Ptak, S. Jonas and J. Stoch	435
Processing	
Ceramics for vehicular engines: state-of-the-art R.N. Katz	449
Ceramics for adiabatic diesel engine R. Kamo, M.E. Woods and W.C. Geary	468
Silicon carbide components for diesel and gasoline engine applications R.C. Phoenix and W.D. Long	488
Materials development and evaluation for the ceramic helical expander R.L. Landingham and R.W. Taylor	494
High temperature structural ceramic materials manufactured by the CNTD process R.A. Holzl, J.J. Stiglich, Jr. and B.G. Zealear	513
Pressure sintering of highly dense and pure non-oxide materials K. Takatori, N. Ogawa, M. Shimada and M. Koizumi	525
The processing and properties of sialons and related nitrogen ceramics K.H. Jack	534
Silicon nitridation and the development of microstructure in reaction bonded silicon nitride F.L. Riley	550
The joining of industrial ceramics to metals	
P. Popper	569
Pressureless sintering of non-oxide ceramics H. Hausner	582
Fabrication of ceramics by plasma spraying K.T. Scott and A.G. Cross	596

Hot pressed silicon nitride with very low amounts of additives R. Becker and F. Thümmler	610
Post-sintering of reaction bonded silicon nitride A. Giachello and P. Popper	620
Properties	
Proof testing of ceramics J.E. Ritter, Jr	632
Effects of stress state on ceramic strength W.H. Duckworth and A.R. Rosenfield	645
Non destructive testing of silicon oxynitride thermal shock sensitivity J.C. Glandus and P. Boch	661
Stability of Si_3N_4 and SiC based materials containing ZrO_2 L.J. Gauckler, J. Weiss and G. Petzow	671
Strenghthening and toughening models in ceramics based on ZrO ₂ inclusions N.Claussen and G. Petzow	680
Fracture mechanics study of a transformation toughened zirconia alloy in the CaO—ZrO ₂ system R. Garvie, R.H.J. Hannink and C. Urbani	692
Thermal conductivity of Si ₃ N ₄ , AIN and Si–AI–O–N ceramics Y. Inomata	706
Improvement of the oxidation behaviour of reaction bonded silicon nitride by addition of aluminium P. Barlier and J.P. Torre	718
Oxidation behavior of hot-pressed Si_3N_4 with Y_2O_3 and AI_2O_3 additions Y. Hasegawa, H. Tanaka, Y. Inomata and H. Suzuki	729
The influence of processing parameters on development of microstructure in hot-pressed silicon nitride and its correlation with mechanical properties H. Knoch, G.E. Gazza and R.N. Katz	737
Basic mechanisms of erosion in ceramics D.G. Rickerby, B.N. Pramila Bai and N.H. MacMillan	752

Effect of porosity on the thermal shock behaviour of reaction-sintered silicon	
nitride G. Ziegler and J. Heinrich	768
Microstructure and mechanical properties of reaction bonded silicon nitride J. Heinrich and H. Hausner	780
Mechanical characterization of sintered $\mathrm{Si}_3\mathrm{N}_4$ E. Campo and G. Ronchiato	793
Sub-Section B2. Ceramics in nuclear reactors	
Ceramic nuclear fuels — status and recent developments K.D. Reeve	807
Fabrication of nuclear ceramics for fast breeder reactor fuels G. Vanhellemont and L. Aerts	823
Ceramic coatings for hostile environments H. Boving and H.E. Hintermann	836
The hot pressing of cubic europia J.B. Ainscough, F. Rigby and E.A. Heigh	847
Contribution to the system europium—boron—carbon K.A. Schwetz, M. Hoerle and J. Bauer	857
Sodium—ceramic interactions M.G. Barker and T.K. Leung	870
Characterization of metastable tetragonal hafnia O. Hunter, Jr., R.W. Scheidecker and Setsuo Tojo	879
Oxide fuel for light water reactors — a standardized industrial product H. Assmann and H. Stehle	893
Sintering of UO ₂ at low temperatures W. Dörr and H. Assmann	913
Sub-section B3. Ceramics in energy conversion systems	
Battery electrolytes, electrodes	
Ceramics in high performance batteries R.S. Gordon, G.R. Miller, T.D. Hadnagy, B.J. McEntire and J.R. Rasmussen	925

Hydrogen containing beta aluminas	
B.A. Bellamy, A. Hooper, A.E. Hughes, J.M. Newsam, C.F. Sampson and B.C. Tofield	950
Solution spray-dried and freeze-dried sodium beta-alumina powders: preparation	
and hot pressing D.J. Green and S. Hutchison	964
Preparation and properties of new oxygen ion conductors for use at low temperatures	
K. Keizer, M.J. Verkerk and A.J. Burggraaf	981
Preparation and properties of yttrium chromite ceramics T. Negas, W.R. Hosler and L.P. Domingues	993
1. Negas, W. II. Hosier and E.I. Domingues	993
Relations between electrocatalytic properties and oxidation states in the ceramic electrodes of copper manganite	
M. Beley, L. Padel, J. Brenet and J.C. Bernier	1007
Anodic oxygen evolution processes on LaCoO ₃ -type semiconductor	
electrodes	
A.G.C. Kobussen and H.J.A. van Wees	1019
Ceramic electrodes for photoelectrolytic decomposition of water	
J.M. Kowalski and H.L. Tuller	1027
The nature of the metal/ceramic interface	
H.J. de Bruin, S.P.S. Badwal and P.W. Slattery	1038
Thermoelectric and piezoelectric materials	
A cermet emitter for a thermionic convertor	
L.R. Wolff	1051
Sintered lead telluride	
R. Breschi, A. Camanzi, V. Fano and A. Olivi	1066
The phase transition transducer	
Wang Yong-Ling, Yin Qing-Rui, Qu Cui-Feng and Zhou En-Ji	1078
Properties of Pb(Zr,Ti)O ₃ ceramics under high electric field K. Okazaki, H. Igarashi and S. Miura	1085
Study of the thermal decomposition of double strontium and barium carbonates using a new technique: constant rate thermal analysis (CRTA)	
J.M. Criado	1096

XVIII

Synthesis and properties of ceramics in the system ZnO—Li ₂ O D. Kolar and M. Trontelj	1106
Effect of the properties of translucent alumina tube on lamp efficiency of high pressure sodium lamp M. Kaneno and I. Oda	1114
Alkaline earth cerates: preparation, technical characteristics and electrical properties V. Longo, F. Ricciardiello and O. Sbaizero	1123
Solar energy cells	
Physics of solar energy cells H.M. Kizilyalli	1131
Low cost silicon-on-ceramic photovoltaic solar cells H.G. Koepke, J.D. Sibold, M.H. Leipold, J.D. Heaps, B.L. Grung and J.D. Zook	1146
The use of semiconducting oxide ceramics in solar energy conversion I.R. Bedwell and E.R. McCartney	1159
The sintering of cadmium sulphide G. Stanišić, Z. Popović, V. Petrović and M.M. Ristić	1173
Thermodynamic aspects and process considerations in the preparation of "Solar grade" Si by reduction of SiCl ₄ in a plasma reactor U. Mirarchi, G. Szabo Miszenti, L. Giarda, G. Perugini and S. Pizzini	1182
Thermodynamic, kinetic and structural considerations for the deposition of silicon single crystal from SiHCl ₃ L. Giarda, A. Mattera, G. Perugini and S. Pizzini	1192
Characterization of ceramic titanium oxides as antireflection coatings for silicon solar cells A. Armigliato, G. Celotti, S. Guerri, G. Martinelli, P. Ostoja and R. Rosa	1203
Materials for MHD generators and other high temperature applications	
Development of materials for high performance channels of oil-fired MHD generators T. Okuo, O. Nomura, T. Homma, O. Yonemochi, T. Okubo, S. Kose and	
M. Iwasa	1211

Thermal stress generated in insulating wall elements of semi-hot MHD generator ducts	
O. Nomura, T. Okuo and T. Homma	1228
Coal slag: its electrical properties and some mechanical effects on MHD ceramics	
R. Pollina, R. Larsen and A. Kumnick	1240
Research on the fabrication of some ceramic materials and their performance in energy conversion simulation systems	
Yen Tung-Sheng and the Solid Electrolyte and MHD Electrode Material	
Research Groups	1253
Wall catalysis: a fundamental phenomenon in high-temperature hydrocarbons systems and its influence on the soot formation	
G. Perugini, U. Mirarchi and G. Faita	1268
Solid state metal—ceramic reaction bonding. Some applications and properties	
F.P. Bailey	1280