Preface	7
---------	---

Part I

THEORETICAL AND EXPERIMENTAL PRINCIPLES

Chapter I. PRINCIPLES AND DEFINITIONS OF THERMODYNAMICS AND ELECTROCHEMICAL KINETICS

 Electrodes and the voltage of the electrochemical cell Galvani and Volta voltage	21 22 23 23 24 24
7. Overpotential	26
8. The elementary act of the electrochemical reactions	30
References	34
Chapter II. MECHANISM OF CRYSTALLIZATION	
I. Introduction 1. Supersaturated fluids and supercooled melts	36 37
II. Principle of growth by successive layers	44
III. Gibbs-Wulff theorem of equilibrium form	44
IV. Stefan problem	45
A. Introduction	45
B. Quantitative treatment of Stefan problem	46
 C. Stefan problem in particular cases 1. Plane crystal 2. Spherical crystal 3. Cylindrical crystal 4. Ellipsoidal crystal 	48 49 53 56 57

ELECTRODEPOSITION OF METAL POWDERS

D. Influence of impurities	58
V. Energetics and kinetics of nucleation	59
1. Energetics of nucleation	59
2. Kinetics of nucleation	62
3. Heterogeneous nucleation	64
4. Single atoms, single molecules and lattice images	69
VI. Defects in crystals	70
1. Point defects	71
2. Linear defects	73
3. Surface defects	74
4. Volume defects	74
VII. Diffusion-controlled growth	74
VIII. Nucleation-controlled growth	75
IX. Dislocation-controlled growth	80
X. Appendix	83
References	85

Chapter III. ELECTROCRYSTALLIZATION

A. Crystallization associated with a chemical reaction	87
B. Electrocrystallization	88
C. Crystallization overpotential	90
1. Definition	9 0
2. Crystallization overpotential as part of total overpotential	90
3. Crystallization impedance as part of Faraday impedance	93
4. Crystallization impedance	94
5. Superposition of crystallization impedance on other impedances	96
6. Identification of crystallization overpotential	102
7. The formation of nuclei as the rate-determining step	107
8. Deposition on real crystal surfaces	109
D. Experimental results on crystallization overpotential	109
1. Potentials determined on static conditions	109
2. Determination of overpotential of nucleus formation	111
3. Electrocrystallization on the surface of real crystals	117
E. Compact polycrystalline deposits obtained by electrocrystallization	122
1. Isolated field-oriented crystals, FI	123
2. FI to BR transition forms	123
3. Crystals which reproduce the substrate, BR	123
4. Polycrystalline deposition by formation of two-dimensional nuclei	124
5. Transition forms, Z	131
6. Polycrystalline deposition by formation of three-dimensional	
nuclei	131
References	134

Chapter IV. CRYSTALLIZATION AND ELECTROCRYSTALLIZATION OF WHISKERS

1. Phenomenological description	a	137
2. The mechanism of whisker	growth	143
3. Stefan problem in case of w	whisker growth	149
4. Vapour-liquid-solid (VLS) m	echanism of whisker growth	155
5. Electron microscope and dif	fraction studies	159
6. Electrocrystallization of whi	skers	160
References		169

Chapter V. THE MECHANISM OF DENDRITE CRYSTALLIZATION

A. Introduction	173
B. Components of dendrites	174
C. Stefan problem for dendrite growth	176
1. Isothermal dendrite	176
2. Nonisothermal dendrite with optimization of growth rate	176
3. Nonisothermal dendrites with layer growth mechanism	180
D. Experimental verification of the theory of dendritic growth	182
1. Dendrite tip	182
2. Transition region	188
3. H-arm region	190
E. The mechanism of dendrite formation from melts	191
1. Role of multiple twin planes	191
2. Dendrites with three twin planes	197
3. Dendrite nucleation	200
F. The influence of impurities	203
G. Growth of dendrites from solutions	203
References	205

Chapter VI. THE THEORY OF IONIC DISCHARGE IN THE RANGE OF LIMITING CURRENT AND THE QUANTUM MECHANISM OF POWDER FORMATION

A. Introduction	207
1. Adatoms and quasi-free atoms	207
2. Zero-charge complexes formed by electrochemical reactions	212
3. Primary and secondary electrode processes	216
B. Quantum theory of ion discharge in the range of limiting current	217
1. Approximate s- η relation	218
2. The equation of current for a generalized barrier	219
3. The potential energy of free electron levels in solution	220
4. The equation of current and s- ε relationship for a rectangular	
potential barrier	223
5. The equation of current and s- ε relationship for a parabolic potential	
barrier	225

ELECTRODEPOSITION OF METAL POWDERS

12

6. The current equation and s- ε relationship without WKB approxi-	
mation	227
7. Interpretation of calculations	231
8. Metal/thin layer/electrolyte solution interface	232
9. Thickness of tunneling through solid films	235
References	236

Chapter VII. COMPACT DEPOSITION AND FORMATION OF POWDER ON SOLID ELECTRODES

1.	Experimental methods	239
2.	Formation of rough electrolytic deposits	246
3.	Formation of electrolytic powders as a function of electrode potential	251
4.	The thermal effect of electrocrystallization of metallic powders	256
5.	Current efficiency	262
6.	Suppression of roughness	263
Re	ferences	264

Chapter VIII. POTENTIAL OF DENDRITE FORMATION ON DROPPING MERCURY ELECTRODES

A. Amalgam formation	267
B. Experimental methods	269
1. The dropping mercury electrode (DME)	269
2. The method of intensity-time curves $(i-t)$	270
3. Microscopic observation and photography	270
C. Experimental results	273
1. Influence of illumination upon formation of dendrites on DME	273
2. Potentials of formation of metallic powders on DME	274
3. Series of potentials of metallic powder formation on DME	281
4. Precipitation of hydroxides and formation of metallic dendrites	
in concentrated solutions	282
5. The $i-t$ curves in case of electrolytic powder formation	288
6. Processes on the hanging mercury drop	289
7. Whisker formation on DME	292
References	292

Chapter IX. CHARACTERISTICS AND STRUCTURE OF ELECTROLYTIC POWDERS

1.	Dimensions and granulometric distribution of electrolytic powders .	294
2.	Specific surface	296
3.	The volumetric mass	297
4.	The activity of electrolytic powders	298
5.	The oxide and anion content	299
6.	Microscopic and ultramicroscopic determinations	303

7. Electrochemical properties of disperse cathodic deposits	306
8. Measurements with the scanning electron microscope	306
9. Deposition on a disc electrode	308
References	309

Chapter X. FRIABLE AND SPONGY DEPOSITIONS AT LOW CURRENT DENSITIES

1.	The	mechanism	of	formation	of	friable cathodic deposits	312
2.	The	mechanism	of	formation	of	spongy cathodic deposits at low	
cu	rrent	densities	••		• • •		316
R	eferer	nces	•••		• • •		321

Chapter XI. MECHANISM OF FORMATION OF ELECTROLYTIC POWDERS AT HIGH CURRENT DENSITY

film	A. Introduction	322
Peterences 220	 formation of powders as a result of depiction of the cathodic film Powder formation as a result of discharge of complex ions Formation of powders as a result of secondary reduction with hydrogen B. The mechanism of dendrite crystallization 	323 325 326 326

Part II

ELECTRODEPOSITION OF POWDERS FROM SOLUTIONS

Chapter XII. COPPER

1. Electrolytes for copper powder deposition	333
2. Current efficiency and energy consumption	338
3. Washing, drying and storage of copper powder	339
4. Equipment and technology	340
References	342

Chapter XIII. SILVER

1. Electrolytes based on silver nitrate	. 345
2. Silver sulphate electrolytes	. 346
3. Electrolytes based on fluosilicic acid	. 346
4. Other electrolytes	. 346
References	. 347

Chapter XIV. GOLD, PLATINUM, PALLADIUM, BISMUTH

1. Gold		 	 	 348
2. Platinum		 	 	 348
3. Palladium	ı	 	 	 349
4. Bismuth		 	 	 349
References		 	 	 349

Chapter XV. LEAD AND TIN

A. Lead	350
1. Alkaline electrolytes	350
2. Acidic electrolytes	351
B. Tin	352
References	354

Chapter XVI. ZINC AND CADMIUM

A Zinc	255
A. Zhit	333
1. Influence of impurities	355
2. Electrolytes for zinc powder deposition	356
3. Current efficiency and properties of electrolytic zinc powder	357
4. Details of industrial production	359
B. Cadmium	359
1. Influence of metallic cations	360
2. Electrolytes for the deposition of cadmium powder	360
References	361

Chapter XVII. IRON

1. Historical outline of iron electrodeposition	364
2. Electrolytes for the recovery of iron powder	365
3. Technological data	371
References	374

Chapter XVIII. NICKEL

1. Electrolytes for disperse nickel deposition	377
2. Electrorecovery of nickel flakes	381
3. Current efficiency of nickel powder deposition	382
4. The activity of nickel powder	384
5. Technical data	385
References	38 6

Chapter XIX. OTHER METALS

1.	Cobalt		• •	•	•	•		•	•	•	•	 •			•		•	• •	•	•	•	•		•				•		 •	•	•		•	•	38	7
2.	Chromium	•	• •	•		• •		•		•	•	 •			•							•							•	 		•			•	387	1
3.	Manganese					•		•				 	•	•		 					•	•	• •	•						 						387	7
4.	Arsenic .	 •	• •								•	 										•			•					 						388	3
5.	Antimony										•	 •			•											•										388	3
6.	Tellurium					• •					•	 			•				•			• •				•						•				388	3
Re	eferences .						•			•	• •	 •				 •		 	•			• •										•	•			389	•

Chapter XX. ELECTRODEPOSITION OF METALS AS COLLOIDAL DISPERSION

1.	Introduction	390
2.	Zinc and cadmium organosols in toluene	392
3.	Lead organosols in xylene	393
4.	Nickel and iron organosols in xylene	394
5.	Organosols of Pb-Sn alloy	395
6.	Organosols of Ni-Cr alloy	396
7.	Ni-Fe alloy organosols	397
8.	Equipment for industrial electrolysis	397
Re	ferences	398

Part III

ELECTRODEPOSITION OF POWDERS FROM MELTS

Chapter XXI. TITANIUM

1. Electrolysis of titanium oxides	402
2. Electrolysis of titanium halides	406
3. Electrolysis of fluotitanates	413
4. Equipment for electrorecovery of titanium powder from melts	421
References	424

Chapter XXII. ZIRCONIUM

1. Electrolysis of the K ₂ ZrF ₆ —NaCl system	428
2. Electrolysis of K ₂ ZrF ₆ —KCl system	433
3. Recovery of metal from the cathodic deposit	437
4. Purity of electrolytic zirconium	438
5. Electrolytic separation of zirconium from hafnium	440
6. Properties of electrolytic zirconium	443
7. Devices for electrorecovery of metallic zirconium	446
References	455

ELECTRODEPOSITION OF METAL POWDERS

Chapter XXIII. URANIUM

1. Fused electrolytes for electrodeposition of uranium powder	456
2. The cathodic deposit and recovery of metal	459
3. Purity of electrolytic uranium	459
4. Equipment and production	460
5. Evolution of electrolytic uranium industrial production	461
References	461

Chapter XXIV. THORIUM

1. Electrolytes for deposition of thorium powders from melts	463
2. Processing of the cathodic deposit	469
3. Purity and properties of electrolytic thorium	470
4. Equipment for electrolysis.	473
References	474

Chapter XXV. MOLYBDENUM

1. Static and dynamic potentials of molybdenum in melts	475
2. Electrolytes for deposition of molybdenum	478
3. Purity and properties of electrolytic molybdenum deposits	481
References	482

Chapter XXVI. BORON

1. Electrolytes for deposition of boron	483
2. Electrolysis and working conditions	484
3. Processing of the cathodic deposit	486
4. Purity of electrolytic boron	486
5. Equipment for electrolysis	488
References	489

Chapter XXVII. NIOBIUM AND TANTALUM

1. Molten electrolytes for deposition of niobium and tantalum	490
2. Working parameters, efficiencies, results	493
3 Anodic electrolysis, products	100
5. Initiale electrolysis products	490
4. Separation and washing of metallic powder	496
5. The purity of electrolytic tantalum and niobium powders	497
6. The properties of electrolytic tantalum and niobium powders	498
7. Comparison of electrolytic tantalum with tantalum recovered by	
other methods	500
	500
8. Equipment for electrolysis	501
Potoronoog	501
References	501

16

Chapter XXVIII. OTHER ELEMENTS

1. Tungster	n 	 	503
2. Vanadiu	m	 	503
3. Silicon		 •••••••••	503
References		 	504

Chapter XXIX. POWDER DEPOSITION FROM MELTS AS A METHOD OF ELECTROLYTIC REFINING OF METALS

1. T	itanium .			• • •		• •	••	• •	•••					• •	 		• •	• •				• •			505
2. V	anadium					• •	••	•••	•••		• •	•••			 	 •		• •	•				•		514
3. B	eryllium						• •					••			 	 •	••								514
4. Cl	hromium					• •	••	••	•••						 	 	•		•			• •	• •		514
5. Zi	irconium					• •	•••	•••	•••		•••	•••			 	 •	• •	• •	•		•		•		515
6. H	afnium					•••	• •			•••	•••	• •			 	 ••	••						•		515
7. Ta	antalum a	ind	niol	biur	n	• •	•••	• •		•••	• •	•••		••	 	 ••	• •			••					516
8. U	ranium			• • •		• •		• •			•••	••			 	 ••	•••		•		•				517
9. P.	lutonium					•••	• •			•••	•••	••			 	 	• •	• •	•	• •				 •	517
10.]	Refining c	ells	• •			•••	• •						••		 	 • •		• •	•				•	 •	523
Refe	rences .					•••	••				•••	• •			 	 	••				•			 •	524
Inde	x		•••		••	••		••						••	 	 •	• •		•		•		•		525