Contents

1.	Introduction. By H. Beck and HJ. Güntherodt.	1
	1.1 Atomic Structure and Dynamics	2
	1.2 Electronic Structure and Transport	3
	1.3 Magnetic Properties	3
	Reference	3
2.	Models for the Structure of Amorphous Metals	
	By P.H. Gaskell (With 21 Figures)	5
	2.1 Conceptual Models for Amorphous Metals	7
	2.1.1 Microcrystallite Models	7
	2.1.2 Dense Random-Packed Hard Sphere Models	8
	2.1.3 Amorphous or Noncrystallographic Cluster Models	10
	a) Noncrystallographic Clusters Based on Tetrahedral	
	Close Packing	10
	b) Stereochemically Defined Models Based on Trigonal	
	Prismatic Packing	12
	2.1.4 Random and Designed Models: Similarities and Differences .	13
	a) Characteristics of Dense Random-Packed and Stereo-	
	chemically Defined Models	14
	2.2 Experimental Investigations of the Local Structure of Transition	
	Metal-Metalloid Glasses	15
	2.2.1 Chemical Short-Range Order Around the Metalloid:	
	M-M Avoidance	16
	2.2.2 The Metalloid Coordination Number.	17
	2.2.3 The Breadth and Shape of the M–T Distribution	19
	2.2.4 Macroscopic Physical Properties	20
	2.2.5 Summary.	21
	2.3 Modelling the Structure of T-M Glasses Using Random-Packed	0.1
	and Stereochemically Defined Models	21
	2.3.1 Construction of the Initial Model	22
	a) Random Monatomic Models	22
	b) Diatomic Random Models	23
	c) Stereochemically-Defined Models	23
	d) Dislocation Models	24
	2.3.2 Refinement of the Zero-Order Model.	24 24
	a) Energy Minimisation	∠4

	2	.3.3 Characterisation of the Topology	27
		a) Analysis of the Interstice Distribution	27
		b) Voronoi Polyhedra	27
		c) Local Structural Parameters	27
	2	.3.4 Anisotropy	28
	2	.3.5 Validation of the Model: Calculation of Microscopic and	
		Macroscopic Properties	28
		a) Bond Length Distributions: Termination Broadening .	29
		b) Thermal Broadening	30
	2.4 N	Indels for Transition Metal-Metalloid Glasses	31
	2	.4.1 Dense Random-Packed Models for Binary Alloys	31
		a) Correlation Functions	31
		b) Coordination Numbers and Analyses of Interstice	
		Distribution Functions	36
		c) Density	38
	2	.4.2 Stereochemically-Defined Models	38
	. –	a) Correlation Functions	38
		b) Coordination Numbers, Density and Polyhedron Size	
		Distributions	40
		c) Extension to Other T–M Alloys.	42
	2.5 C	Concluding Remarks	
	2.6 P	Postscript (July 1983)	45
		ences	47
3.	X-Ra	y and Neutron Diffraction Experiments on Metallic Glasses	
		F. Sadoc and C. N. J. Wagner (With 16 Figures)	51
		ntroductory Comments	
	3.2 I	Diffraction Theory of Amorphous Materials	52
	3	.2.1 Interference Functions	52
		a) Debye Formula	52
		b) Monatomic Glasses	53
		c) Polyatomic Glasses – Partial Interference Functions	
		d) Determination of the Partial Functions	55
	3	.2.2 Radial Distribution Functions and Fourier Transform	;
	C	Techniques	57
		a) Radial Distribution Functions	
		b) Partial Radial Distribution Functions	58
		c) Total Radial Distribution Functions	59
	3	2.2.3 The Bhatia-Thornton Formalism	60
	5	a) Number-Concentration Partial Functions	61
		b) Properties of the Number-Concentration Partial	01
		Functions	62
		c) Chemical Short-Range Order in Binary Alloys	02
		[Generalized Warren Chemical Short-Range Order	
		(CSRO) Parameter]	63
			0.0

<u>-</u>	F -max	rimontal Diffraction Mathada	65
5.5		rimental Diffraction Methods	65
		Variable 2θ X-Ray Method	66
	3.3.2	Correction of the Measured X-Ray Intensities	68
		a) Measured Intensity	68
		b) Absorption Correction $A(2\theta, E, E')$ and Polarization	
		Factor $P(2\theta)$	69
		c) Atomic Scattering Factor and Multiple Scattering	70
		d) Normalization of the Scattered Intensity	71
		e) Spurious Effects Occurring in Fourier Transformation	
		Termination Effects	72
	3.3.3	Neutron Diffraction	74
		a) Some Characteristic Properties of Neutrons	74
		b) Neutron Interaction with Matter	74
	334	Neutron Scattering Amplitude.	75
	5.5.4	a) Nuclear and Magnetic Scattering Amplitudes	75
		b) Polarized Neutron Beams	75
		c) Nonpolarized Neutron Beams	76
	0 0 <i>c</i>	d) Polarization Analysis	76
	3.3.5	Correction of the Measured Neutron Intensity	77
		a) Absorption Correction	77
		b) Incoherent Scattering and Background	77
		c) Multiple Scattering	77
		d) Inelastic Scattering and Placzek Correction	77
3.4	Struc	ture of Metallic Glasses	78
	3.4.1	Partial Functions of Metal-Metalloid Glasses	78
		a) Combination of X-Ray, Nuclear and Polarized Neutron	
		Diffraction Data for the Evaluation of the Structure of	
		an Amorphous Co ₈₀ –P ₂₀ Alloy	78
		b) Combination of X-Ray and Neutron Diffraction Data	
		for the Evaluation of the Structure of an Amorphous	
		Fe–B Alloy	80
		c) Combination of Three X-Ray Wavelengths Involving	00
		Anomalous Dispersion Corrections of the X-Ray Scatter-	
		ing Factors for the Evaluation of Partial Functions .	٥n
	2 4 2		80
	3.4.2	Structure of Metal-Metal Glasses	82
		a) X-Ray and Neutron Structure Investigation of Amorphous	~
	,	Transition Metal Rare-Earth Metal Alloys	82
		b) Isotopic Substitution in an Amorphous $Cu_{57}Zr_{43}$ Alloy	
		for the Determination of the Partial Functions from	
		Neutron Diffraction Data	82
		c) Isomorphous Substitution of Zr by Hf in Amorphous	
		$Cu_{60}Zr_{40}$ and $Ni_{35}Zr_{65}$ Alloys	84
		d) Combination of X-Ray and Neutron Scattering for the	
		Evaluation of Topological and Chemical Short-Range	
		Order in Ni-Ti Glasses	86

	Conclusion
Ref	erences
Mös	ssbauer Spectroscopy Applied to Amorphous Metals
	U. Gonser and R. Preston (With 21 Figures)
	How Mössbauer Spectra are Measured
	4.1.1 Source
	4.1.2 Absorber
	4.1.3 Detector
	4.1.4 Drive System
	4.1.5 Mössbauer Spectra
	4.1.6 Scattering Geometry
4.2	Mössbauer Parameters
	4.2.1 Recoil-Free Fraction
	4.2.2 Thermal Shift
	4.2.3 Hyperfine Interactions
	a) Isomer Shift
	b) Magnetic Splitting
	c) Quadrupole Splitting
	Mössbauer Effect as a Microprobe
4.4	Mössbauer Spectra of Amorphous Metals
	4.4.1 Effects Due to the Variation of Metalloid Atoms
	4.4.2 Effects Due to the Variation of Metal Atoms
	4.4.3 Hyperfine Field Distribution
	4.4.4 Can the Atomistic Structure be Deduced from the Spectr
	Structure?
4.5	Magnetic Properties
	4.5.1 External Static Fields
	4.5.2 External Dynamic Fields
	4.5.3 Surface Fields (Scattering Method).
4.6	Stress
	4.6.1 Use of Polarized γ -Radiation
4.7	Conclusion

5. Defects and Atomic Transport in Metallic Glasses

By P. Chaudhari, F. Spaepen, and P.J. Steinhardt (With 31 Figur	es).	127
5.1 Background		127
5.2 Experimental Studies in Atomic Transport Properties		129
5.2.1 General Concepts		129
a) Types of Atomic Transport		129
b) Equilibrium and Isoconfigurational Properties		130

		5.2.2	Viscosity	131
			a) Experimental Conditions and Techniques	
			b) Equilibrium Measurements	
			c) Isoconfigurational Measurements	
			d) Stress-Dependence of the Flow Rate	
		5.2.3	Diffusion	
			a) Experimental Techniques	
			b) Diffusivity of the "Smaller" Atoms	
			c) Diffusivity of the "Large" Atoms	. 136
			d) Scaling of Viscosity and Diffusivity	
		5.2.4	Structural Relaxation	. 138
			a) Kinetics of the Viscosity Increase	. 138
			b) Kinetics of the Diffusivity Decrease	
			c) Relationship Between the Effects of Structural Relaxation	1
			on Different Properties	
		5.2.5	Similarity Between the Defects Governing Diffusion	
			and Flow	. 139
	5.3	Com	puter Simulation Studies of Defects and Atomic Transport	. 140
		5.3.1	General Concepts	. 140
		5.3.2	Computer-Built Models	. 141
		5.3.3	Point Defects	
			a) Definition of a Point Defect in Glasses	. 143
			b) Static Relaxation	. 144
			c) Dynamic Relaxation	
		5.3.4	Line Defects – Static Relaxation	
			a) Definition of Line Defects in Glasses	
			b) Introducing the Defects in Glasses	
			c) Detection of Dislocation After Relaxation	
			d) Burgers Vector	
			Dynamic Relaxation Studies	
			cluding Remarks	
	Ref	erence	es	. 166
6.			al Properties of Metallic Glasses	
			Künzi (With 16 Figures)	
			view	
	6.2		icity of Metallic Glasses	
			Experimental Techniques	
			Elastic Constants	. 173
			Theoretical Considerations	. 176
		6.2.4	Magnetoelastic Behaviour	. 179
			a) Isotropic Effects	. 180
			b) Anisotropic Effects	. 181
			c) The ΔE Effect	. 183
			d) Experimental Results for the ΔE Effect	. 186

e) Effect of Annealing on ΔE		187
f) Temperature Dependence of the ΔE Effect	•	188
6.3 Anelasticity of Metallic Glasses	•	189
6.3.1 Experimental Techniques	•	190
6.3.2 Thermoelastic Relaxation		192
6.3.3 Magnetoelastic Relaxation	•	193
6.3.4 Structural Relaxations	•	197
a) Experimental Results	•	201
6.4 Plastic Deformation of Metallic Glasses		212
References.	•	214
7. Vibrational Dynamics of Metallic Glasses Studies by Neutron Inelas	tic	
Scattering. By JB. Suck and H. Rudin (With 16 Figures)		217
7.1 Background		217
7.2 Recent Computer Simulations and Model Calculations		220
7.3 Experimental Techniques		225
7.4 The Dynamical Structure Factor		229
7.4.1 Dynamical Structure Factors of Binary Glassy Alloys		
7.4.2 Low Energy Excitations		
7.4.3 Propagating Short Wavelength Collective Excitations .		
7.5 Gases in Topologically Disordered Alloys		
7.6 Frequency Distributions		
7.6.1 Frequency Spectrum of the Metal-Metalloid Glass Pd ₈₀ S		
7.6.2 Generalized Frequency Distribution of Binary Glassy Allo		
7.6.3 Low Energy Region of the Generalized Frequency	<i>.</i> , <i>.</i>	
Distribution of Binary Glassy Alloys		248
7.6.4 Moments and Thermodynamic Properties Calculated w		
the Generalized Frequency Distributions of Glassy Alloy		
7.7 Concluding Remarks		
References.		257
8. Laser Quenching. By M. von Allmen (With 10 Figures)	•	261
8.1 Experimental Results	•	262
8.1.1 General Remarks	•	262
8.1.2 Short Laser Pulses: Alloys	•	262
a) Au–Si System	•	263
b) Pd-Si and Pt-Si Systems		266
c) V–Si and Nb–Si Systems		268
d) Other Systems		269
8.1.3 Short Laser Pulses: Pure Elements	•	270
8.1.4 Continuous Beams in a Scanning Mode		
8.2 Analysis of the Laser Melting and Quenching Process	•	272
8.2.1 Kinetic Conditions for Glass Formation	•	272
8.2.2 Heat Flow	•	274
8.2.3 A Model of Laser Quenching		276

	8.2.4 Discussion	279
	8.3 Conclusion	
	References	281
9.	Electron Spectroscopy on Metallic Glasses	
	By P. Oelhafen (With 36 Figures).	283
	9.1 Overview	283
	9.2 Experimental Techniques	287
	9.2.1 Background	287
	9.2.2 Photoelectron Spectroscopy (PES)	289
	9.2.3 Auger Electron Spectroscopy (AES)	
	9.2.4 Electron Energy Loss Spectroscopy (EELS)	
	9.3 Glassy Transition Metal Alloys (T–T Alloys)	
	9.3.1 Experimental Results	
	a) Valence Band Spectroscopy	
	b) Core Electron Spectroscopy	
	9.3.2 Discussion	
	9.4 Glassy Alloys Containing Transition Metals and Normal Metals	270
	or Metalloids (T–N Alloys)	307
	9.4.1 Alloys of $3d$ Transition Metals and Metalloids	
	a) Glassy Fe-Alloys	
	b) Glassy Co-Alloys	211
	c) Glassy Ni-Alloys	
	9.4.2 Glassy Alloys of 4d Transition Metals and Metalloids .	
	9.4.2 Classy Alloys of 4 <i>a</i> Transition Metals and Metalloids .	214
	9.4.3 Glassy Pd-Alloys with Si	210
	9.5 Other Groups of Metallic Glasses	
	a) Hydrogenated Metallic Glasses	
	9.6 Conclusion \ldots \ldots \ldots \ldots \ldots \ldots \ldots	
	References	321
10). Low Temperature Electron Transport in Metallic Glasses	225
	By R. Harris and J. O. Strom-Olsen (With 7 Figures).	525
	10.1 The Electrical Resistivity	
		325
	10.1.1 General Behavior	325 325
	10.1.1 General Behavior10.1.2 Magnetic Models for the ln T Behavior	325 325 328
	10.1.1 General Behavior10.1.2 Magnetic Models for the ln T Behavior10.1.3 Scattering from the Structure: Two Level Systems	325 325 328 330
	10.1.1 General Behavior10.1.2 Magnetic Models for the ln T Behavior10.1.3 Scattering from the Structure: Two Level Systems10.1.4 Discussion	325 325 328 330 335
	10.1.1 General Behavior10.1.2 Magnetic Models for the ln T Behavior10.1.3 Scattering from the Structure: Two Level Systems10.1.4 Discussion10.2 The Thermoelectric Power	325 325 328 330 335 336
	10.1.1 General Behavior	 325 325 328 330 335 336 339
	10.1.1 General Behavior	 325 325 328 330 335 336 339 339
	10.1.1 General Behavior	 325 325 328 330 335 336 339 339
	10.1.1 General Behavior	 325 325 328 330 335 336 339 339
11	10.1.1 General Behavior	325 325 328 330 335 336 339 339 340
11	10.1.1 General Behavior	 325 325 328 330 335 336 339 340 343
11	10.1.1 General Behavior	 325 325 328 330 335 336 339 340 343

XIV Contents

11.2 Magnetic Properties of Metallic Glasses as Probes of Their	
Atomic-Scale Structure	
11.2.1 Local Symmetry in Amorphous Alloys	
a) Local Studies of EFG	
b) Crystal-Field Effects in Amorphous Alloys	
Containing RE	
11.2.2 Fluctuations in Metallic Glasses Over a Medium-Range	
Scale	
a) Bulk Magnetic Properties	
b) Hyperfine Field Distribution Studied by NMR in	
Ferromagnetic MG's	
11.3 Magnetic Properties of Metallic Glasses Based on Transition	
Metals	
11.3.1 The Models for the Magnetic Properties of Metallic	
Glasses	
11.3.2 From the Dilute Impurity Regime to the Onset of	
Long-Range Homogeneous Magnetic Order	
a) The Inhomogeneous Character of the Appearance of	
Magnetism	
b) The RKKY Interaction in Metallic Glasses 361	
c) The Ferromagnetic-to-Spin Glass Transitions 363	
11.3.3 Ferromagnetic Metallic Glasses Based on Transition	
Metals	
a) Magnetic Moment and Curie Temperature 366	
b) Magnetic Excitations, Invar Properties and Critical	
Phenomena	
11.4 Rare-Earth Base Metallic Glasses	
11.4.1 Metallic Glasses Containing Gd or Eu	
11.4.2 Metallic Glasses Containing Non-S State RE Ions 376	
11.4.3 Metallic Glasses with Intermediate Valence RE Ions . 377	
11.4.4 Uranium Base MG's and Transition-Metal Base MG's	
with RE Additives	
11.5 Concluding Remarks	
References	
Subject Index	