Contents

1. Introduction. By H. Beck and HJ. Güntherodt (With 4 Figures) .	. 1
1.1 Introductory Remarks	. 1
1.1.1 Preparation	. 1
a) Splat Cooling	. 2
b) Melt Spinning	. 2
1.1.2 Characterization	. 3
1.2 Experiments	. 4
1.2.1 Static Structure	. 4
1.2.2 Ionic Dynamics	. 5
1.2.3 Electronic Structure and Transport	. 7
1.2.4 Magnetic and Mechanical Properties	. 8
1.3 Theoretical Approaches	. 9
1.3.1 Electronic Properties	. 10
1.3.2 Ionic Properties	. 12
1.4 Special Features	. 15
1.4.1 Applications \ldots \ldots \ldots \ldots \ldots	. 15
1.4.2 Cross Disciplinary Relations	. 16
References	. 16
Bibliography	. 17
2. Metallic Glasses – Historical Background	
By P. Duwez (With 1 Figure)	. 19
References	. 23
3. Structural Study by Energy Dispersive X-Ray Diffraction	
By T. Egami (With 12 Figures).	. 25
3.1 Principles	. 26
3.2 Equipment	. 27
3.2.1 System Design	. 27
3.2.2 X-Ray Source	. 27
3.2.3 Optical System	. 28
3.2.4 Detector System	. 29
3.3 Data Reduction	. 30
3.3.1 Theory	. 30
3.3.2 Determination of the Parameters	. 32
3.3.3 Structural Determination	. 34

3.4	Results of Structure Study	35
	3.4.1 Structural Relaxation Observed by EDXD	35
	3.4.2 Kinetics of Structural Relaxation	39
	3.4.3 Structural Defects and Physical Properties.	41
3.5	Further Applications	43
Refere	ences	43
4. EX	AFS Studies of Metallic Glasses. By J. Wong (With 19 Figures) .	45
4.1	Background	45
4.2	EXAFS Fundamentals	49
	4.2.1 The Physical Mechanism	49
	4.2.2 The Single Scattering Approximation	51
	4.2.3 Synchrotron Radiation as Light Source for EXAFS	
	Experiments	53
	4.2.4 Data Analysis	55
	425 Unique Features of EXAFS	58
43	Metallic Glasses	60
т.5	A 2.1 Structure of Metallic Glasses A Brief Survey	60
	4.5.1 Structure of Metallic Olasses – A blief Survey,	62
	4.3.2 EAAFS Results	05
		64
	b) Metalloid Environment	68
	c) Metal Environment	71
4.4	Concluding Remarks	73
Refere	ences	75
5. Bri	llouin Light Scattering from Metallic Glasses	
Bv	A.P. Malozemoff (With 5 Figures)	79
51	Overview	70
5.1	Experimental Pecults and Discussion	87
5.2	5.2.1 Surface Dhonons	02
	5.2.1 Sufface Honors,	02
	5.2.2 Bulk and Surface Magnons: Inick Materials.	85
	5.2.3 Bulk and Surface Magnons: Thin Films	87
5.3		88
Refere	ences	90
Notes	Added in Proof	91
6 Th	acry of the Structure Stability and Dynamics of Simple Matel	
	uses By I Hafner (With 22 Figures)	03
6.1	Deckground	03
6.1	Interactions in Dinary Alloys	95
0.2	(2.1. Deve de retentiele fen Dineme Genteme	90
	6.2.1 Pseudopotentials for Binary Systems	99
	6.2.2 Effective Pair Potentials	100
63	· · · · · · · · · · · · · · · · · · ·	102
0.5	Crystalline Alloys	102
0.5	6.3.1 Tetrahedrally Close-Packed Frank-Kasper Compounds and	102
0.5	6.3.1 Tetrahedrally Close-Packed Frank-Kasper Compounds and Related Structures	102

	6.3.3 Intermetallic Compounds in the Glass-Forming	
	Composition Range)5
6.4	Liquid Alloys.)7
6.5	The Structure of Amorphous Alloys	19
	6.5.1 Structural Models	0
	a) Sphere Packing	0
	b) Designed Models	1
	6.5.2 The Structure of Simple-Metal Glasses	2
6.6	The Stability of Amorphous Alloys	9
6.7	The Dynamical Properties of Amorphous Metals	26
	6.7.1 The Equation-of-Motion Method	27
	a) The Vibrational Density of States	28
	b) The Dynamical Structure Factor	28
	6.7.2 Molecular Dynamics	30
	673 Continued-Fraction Techniques	30
	674 The Dynamics of Amorphous Mg. Zn	32
6.8	Flectronic Properties 12	34
6.0	Conclusions 13	36
Refere	nces 13	37
Notes	$\Delta dded in Proof (see p. ')61)$,,
10005	Added in 11001 (See p. 201)	
7 Ele	ctrical Transport in Glassy Metals	
, LK By	P I Cote and I. V. Meisel (With 12 Figures)	41
71	Experimental Results	41
/.1	7.1.1 The Mooil Correlation	41
	7.1.2 Simple and Noble Metal Alloys	<u>11</u>
	7.1.2 Simple and Robie Metal Alloys	47
	Metalloid-Containing Alloys	47
	Metalloid Free Allow	τ/ /Q
7 7	Theoretical Approaches to Electrical Transport in Amerphane	+0
1.2	Metals	50
	Medials	50
	7.2.1 Reduction of the Kubo Formula and its Relation to	5 1
	Ziman-Faber Theory	51
	7.2.2 The Diffraction Model: Ziman-Faber Theory 1	33
	7.2.3 Transport in High Resistivity Metals	6U
7.3		64
Refer	ences \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	65
0 T		
8. Lo	w-Energy Excitations in Metallic Glasses	
By	J. L. Black (With 7 Figures). \ldots \ldots \ldots \ldots \ldots	67
8.1	The Tunnelling Model	68
	8.1.1 General Considerations	68
	8.1.2 Two-Level Model	68
	8.1.3 Experimental Consequences	71
8.2	Low-Temperature Properties of Metallic Glasses	75

8.2.1 Specific Heat	175
8.2.2 Thermal Conductivity	175
8.2.3 Ultrasonic Attenuation and Sound Velocity	177
8.2.4 Summary	180
8.3 Interaction Between Tunnelling States and Conduction Electrons	180
8.3.1 Origin of the TLS-Electron Coupling	180
8.3.2 Korringa Relaxation Process	182
8.3.3 Ultrasonics in Superconducting Metallic Glasses	185
8.3.4 Electrical Resistance and Many-Body Effects	186
8.3.5 Other Effects	187
8.4 Conclusions	188
References	189
9 Superconductivity in Metallic Classes	
By W. J. Johnson (With 12 Figures)	101
0 1 Preview	101
9.1 Historical Background	101
9.1.1 Instorical Dackground	102
9.2 Amorphous Matchais	102
9.2 Origins of Superconductivity	102
a) BCS Superconductors	102
b) Strong-Coupling Superconductors	103
c) The Case of Amorphous Materials	193
9.2.2 Phenomenology	194
a) Free Electron Metals	196
b) Transition Metals	107
9.2.3 Analysis in Terms of Microscopic Theory	201
a) Free Electron Metals	201
b) Transition Metals and Allovs	201
93 Ginzburg-Landau Superconductors in the High K Limit	212
9.3.1 The Upper and Lower Critical Fields	212
9.3.2 Critical Phenomena	212
9.3.3 Homogeneity, Critical Current Density and Flux Pinning	215
9.4 Materials for Applications	219
9.4.1 High Field Magnets	219
9.4.2 Effects of Neutron Irradiation	219
9.4.3 Composite Materials	220
References	220
10 Crystallization of Matallic Classes	
Dy II Köster and II Herold (With 25 Figures)	225
10.1 Background	225
10.1 Dackground	225
10.2 Caparal Considerations Concerning Thermodynamics and	220
Kinetics of Crystallization	228
KINCHOS OF OLYSIAMZANON	440

10.3.1 Crystallization Reactions in Amorphous Alloys 2	28
a) Polymorphous Crystallization	29
b) Primary Crystallization	29
c) Eutectic Crystallization	:30
10.3.2 Growth of Phases During Crystallization 2	31
10.3.3 Nucleation of Crystallization	:35
10.3.4 Kinetics of Crystallization in Metallic Glasses 2	:38
10.4 Diffusion in Metallic Glasses	:40
10.5 Micromechanism of Crystallization in Some Metallic Glasses . 2	242
10.5.1 General Considerations	242
10.5.2 Fe–B Metallic Glasses	244
10.5.3 Pd–Si Metallic Glasses	248
10.5.4 Cu–Zr Metallic Glasses	249
10.5.5 Mg–Zn Metallic Glasses	251
10.6 Influence of External Factors on Crystallization	:52
10.6.1 Influence of Surface	252
10.6.2 Influence of Quenching Rate and Temperature 2	254
10.6.3 Influence of Irradiation	254
10.6.4 Influence of Plastic Deformation	255
10.6.5 Influence of Hydrostatic Pressure	255
10.6.6 Influence of Uniaxial Tension	255
10.7 Conclusions	256
References	257
Notes Added in Proof for Chapter 6	261
Subject Index	263