目 次

第1章	人間と環境放射線モニタリング	1
1.1	放射線とは	1
1.2	環境放射線	3
1.3	モニタリング	3
1.4	放射線環境	3
1.5	放射線被曝	3
1.6	放射線源	4
1.7	環境におけるモジュレーション,モディ	
	フィケーションとモニタリング	6
1.8	放射線の単位	7
第2章	環境における放射線の分布と変動	9
2.1	環境における放射線	9
2.2	宇宙線	10
2.3	2.1 1次宇宙線	10
2.3	2.2 2次宇宙線	11
2.2	2.3 モジュレーション	13
2.3	大地からの放射線	13
2.3	3.1 根源的な源と巨視的な特徴	13
2.3	3.2 直接の源たる土壌	14
2.3	3.3 間接的な源たる岩石	14
2.3	3.4 日本におけるバックグラウンド	
	放射線レベル ・・・・・	15
2.3	3.5 大地の放射線の計測と留意すべき点15…	15
2.4	大気からの放射線	17
2.5	建造物と放射線	20
2.	5.1 はじめに	20
2.	5.2 建築様式について	20
2.	5.3 建造物の遮蔽効果	21
2.	5.4 建築材料中の放射能	21
2.	5.5 屋内と屋外の線量率の比	21
2.	5.6 宇宙線による屋内線量	22
2.	5.7 屋内のラドン	24
2.6	海上での放射線	24

2.7 放;	射性降下物からの放射線	25
2.7.1	放射性降下物の一般概要	25
2.7.2	放射性降下物の核種組成と時間変化	26
2.7.3	放射線場としての特徴	26
2.8 原	子力施設由来の放射線	29
2.8.1	原子力施設由来の放射線源	29
2.8.2	各種線源による放射線の変動特性	30
2.9 日2	本人の外部被曝線量	34
2.9.1	被曝放射線の種類	34
2.9.2	自然放射線被曝	35
第3章 現	環境における放射性核種の分布と挙動 …	38
3.1 環	境における放射性核種	38
3.1.1	自然放射線源ならびに核実験	38
3.1.2	原子力発電所	46
3.1.3	再処理工場	63
3.2 環	境中での放射性核種の挙動	71
3.2.1	気圏における挙動	71
3.2.2	陸圏における挙動	84
3.2.3	海洋における挙動	90
3.3 環	境における放射性核種の分布	100
3.3.1	気圏における分布	100
3.3.2	陸圏・淡水圏における分布	120
3.3.3	海洋における分布	124
3.4 食	物を通しての放射性核種の取り込み	136
3.4.1	はじめに	136
3.4.2	日常食	136
3.4.3	栄養調査法	136
3.4.4	海産物消費実態調査法	140
3.4.5	食品摂取量の変動幅について	141
3.4.6	おわりに	141
3.5 日2	本人の内部被曝線量とその変動	142
3.5.1	はじめに	142
3.5.2	¹³⁷ Csの内部被曝線量とその変動	143

3.5.3	*°Kの内部被曝線量とその変動	144
3.5.4	¹³¹ Iによる甲状腺被曝線量とその変	
	動	145
3.5.5	おわりに	146
第4章 環	境放射線モニタリングの考え方	147
4.1 環境	意放射線モニタリングの枠組	147
4.1.1	環境放射線モニタリングの対象	147
4.1.2	環境放射線モニタリングの経緯	148
4.1.3	環境放射線モニタリングの基本的な考	
	え方	149
4.1.4	環境放射線モニタリングにおける一般	
	的考え方	153
4.2 環境	意放射線モニタリングと行政との係わ	
り		156
4.2.1	アセスメントとモニタリング	156
4.2.2	モニタリングにおける地方自治体,	
	設置者,国の役割	157
4.2.3	評価機構等	159
4.2.4	環境放射線モニタリングの全体像	163
4.3 基準	港,目標,指標 ······	163
4.3.1	コンサバティブかリアリスティックか …	164
4.3.2	基準などに使われる線量の種類	165
4.3.3	基準などの種類	165
4.4 被劈	暴経路と環境放射線モニタリング	166
4.4.1	被曝経路と環境試料	166
4.4.2	空間放射線モニタリング	173
4.4.3	陸上試料のモニタリング	179
4.4.4	海洋試料のモニタリング	182
4.5 質の	D保証	183
4.5.1	手法	183
4.5.2	クロスチェック(比較分析)の現状 …	184
第5章 環	環境放射線モニタリングの実際	186
5.1 環均	寛放射線モニタリング計画の立案	186
5.1.1	計画作成に当って	186
5.1.2	環境放射線モニタリング計画に当って	
	の基本的考え方	190
5.1.3	計画立案の具体的手順	191
5.1.4	実施計画の見直し	197
5.1.5	モニタリングと環境パラメータ	197
5.2 モニ	ニタリングの実際例	198

5.2.1	地方自治体および設置者のモニタリン… グ例	198
5.2.2	空間放射線線量および連続モニタ	202
5.2.3	関連気象情報	204
5.2.4	積算線量	205
5.2.5	地方自治体ごとの特徴	207
5.2.6	環境試料モニタリング例	207
5.2.7	陸上試料モニタリング	207
5.2.8	海洋試料モニタリング	209
5.2.9	環境試料の放射能測定	210
5.3 測知	宅の考え方と手法	211
5.3.1	分析・測定法マニュアルの解説	211
5.3.2	測定法の選択	215
5.3.3	合理化	215
5.3.4	試料採取および前処理方法	215
5.3.5	定量可能レベルと供試量	217
5.4 環均	意放射線モニタリングに用いる測定器 …	219
5.4.1	種類と用途	219
5.4.2	保守管理・校正	222
5.5 測気	きと記録	227
5.5.1	測定上の留意点	227
5.5.2	測定データの記録	229
5.6 測知	2値の吟味と評価	238
5.6.1	測定値と変動	238
5.6.2	測定値の吟味	242
第6章 被	g 曝線量 評価 ····································	254
6.1 被赚	暴線量評価の考え方	254
6.1.1	事前評価	254
6.1.2	運転中評価	256
6.1.3	総合評価	256
6.1.4	被曝線量の評価方法について	257
6.1.5	ICRPの1977年勧告以降の動向	258
6.2 環均	寛放射線モニタリングデータに基づく	050
線量	■計算 ····································	259
6.2.1	被曝経路	259
6.2.2	破爆線量算出万法	202 971
6.3 放出	出線情報に基づく線量計算	211 271
6.3.1	大気栓田	611
6.3.2	気体発業物中に含まれる放射性物質に	97 A
	起囚する傲躁線重計算	214
6.3.3	液体発業物中に含まれる放射性物質に なります。	900
	起囚する破曝線重計算	28U

6.3.4	気体廃棄物中および液体廃棄物中に含まれ
	る放射性ヨウ素を同時に摂取する場合の甲
	状腺被曝線量計算 ······ 238

7.1	評估	町と公	表		•••••	• • • • • • • • • • • •	•••••	285
7.	1.1	評価	••••	• • • • • • • • • • •			••••	285
7.	1.2	公表		• • • • • • • • • • •		• • • • • • • • • • • •	•••••	285
7.2	結果	見の見	方,	使い方	に関す	る留意点	ž	287

7.2.1 測定結果の変動要因の把握 ………… 287

7.2.2 空間放射線線量率測定値の取り扱いについて 288
7.2.3 放射性核種の分析 288
7.2.4 検出下限値 289
7.2.5 指標生物データの取り扱い上の注意点 290
7.2.6 測定結果相互の関連性 290
7.2.7 被曝線量推定値 290
7.2.8 測定結果の基準値などとの比較 290
7.3 おわりに 291

表目次

第1章

表1.1	化学的なエネルギーと放射線の	
	エネルギー・・・・	1
表1.2	放射線環境·····	4
表1.3	自然放射線源	4
表1.4	人工放射線源	4
表1.5	人間活動に伴う放射線源	4
表1.6	集団と被曝線量	7

第 2 章

表2.3.1	土壌中放射性核種による線量寄与	14	表3
表2.3.2	岩石中の放射性核種濃度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15	表3
表2.4.1	地上1mにおける大気中各種放射能に		表3
	よる線量率の概算値・・・・・・	18	表3
表2.4.2	地上1mにおける線束密度,線量率と		表3
	ラドン(²²² Rn)娘核種濃度の関係		表3
	と平均エネルギー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18	
表2.4.3	地上1mにおける100pCi/m³のラドン		表3
	娘核種によるエネルギー・スペクトル…	19	
表2.4.4	地上1mにおける100pCi/m³のラドン		表3
	娘核種による角度分布・・・・・	19	表3
表2.4.5	線束密度および線量率と高さの関係,		表3
	E>50keVの光子に関するもの(図2.4.1		表3
	の分布に対応)	19	
表2.4.6	大気中の放射性核種からのβ線線量		表3
	率	20	
表2.5.1	大地のィ線による屋内の空気吸収線量		表3
	率のサーベイ結果	23	
表2.6.1	海水中の放射性物質による照射線量率…	24	表3
表2.8.1	観測対象として考えるべき線源の種類		
	と性質	29	表3
表2.8.2	自然放射線と施設寄与分の特性比較	30	
表2.9.1	環境からの放射線被曝	34	表3
表2.9.2	自然放射線被曝	34	
表2.9.3	人間活動に伴って変化する放射線被曝…	34	表3
表2.9.4	人工発生源による外部被曝	35	
表2.9.5	自然放射線による外部被曝	3 5	表3
表2.9.6	線量計算手順	35	
表2.9.7	宇宙線被曝の内訳	36	表3
表2.9.8	宇宙線被曝電離成分寄与の地域分布,		表3
	時間変動	36	

表2.9.9	大地(大気を含む)の天然放射性核種
	からの空間放射線によって日本人が受
	ける年間線量当量

第 3 章

表3.1.1	現在までに発見されている天然放射	
	性核種の起源と数・・・・・	38
表3.1.2	壊変系列を構成しない原初天然放射性	
	核種	39
表3.1.3	地球起源放射性核種	40
表3.1.4	宇宙線生成放射性核種	41
表3.1.5	主な天然核種の存在比または生成率	42
表3.1.6	大気圏核爆発実験の内訳・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
表3.1.7	核分裂生成物の収率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
表3.1.8	原子力発電所の運転・建設状況	47
表3.1.9	²³⁵ Uの熱中性子による代表的な核分	
	裂生成物と核分裂収率	49
表3.1.10	ウラン原子炉燃料の中で問題となる核	
	分裂核種の計算値・・・・・	50
表3.1.11	主要な放射化生成物と生成核反応	51
表3.1.12	炉水中腐食生成物濃度	51
表3.1.13	その他の放射化生成物と生成核反応	51
表3.1.14	各発電所の年度別気体廃棄物放出量	
	(希ガス)	57
表3.1.15	各発電所の年度別気体廃棄物放出量	
	(気体廃棄物中の131Ⅰ)	57
表3.1.16	各発電所の年度別液体廃棄物放出量	
	(トリチウムを除く液体廃棄物)	58
表3.1.17	各発電所の年度別液体廃棄物放出量	
	(液体トリチウム)・・・・・	58
表3.1.18	諸外国の原子力発電所の 放射性廃棄物	
	放出実績······	59
表3.1.19	1979年の米国の原子力発電所の気体廃	
	棄物の核種組成	60
表3.1.20	1979年の米国のPWR, BWR, 英国	
	のGCRの液体廃棄物の核種組成	61
表3.1.21	福井県の原子力発電所の 液体廃棄物の	
	核種組成	62
表3.1.22	各国の再処理工場一覧	64
表3.1.23	1975年~1979年の再処理工場から大気	
	中への放射性物質放出量・・・・・	65

表3.1.24	東海再処理工場からの放射性気体廃棄	
	物の放出実績・・・・・	66
表3.1.25	再処理した使用済燃料の発電容量	66
表3.1.26	再処理工場から水圏への放射性物質放	
	出量	67
表3.1.27	Sellafield再処理工場からの液体廃棄	
	物中放射性物質の同位体組成・・・・・	68
表3.1.28	東海再処理工場からの放射性液体廃棄	
	物 の放出実績	70
表3.2.1	地表面粗度の長さ	72
表3.2.2	Pasquillの安定度階級・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
表3.2.3	放射性粒子の沈着速度の測定例	78
表3.2.4	通常粒子の沈着速度の測定例	78
表3.2.5	ガスの沈着速度の測定例	78
表3.2.6	図3.2.20の計算に用いられた条件	81
表3.2.7	雨による粒子の捕捉効率	82
表3.2.8	土壤から農作物への移行係数	87
表3.2.9	放射性核種の農作物(可食部)への移	
	行率	88
表3.2.10	水中濃度および濃縮係数	89
表3.2.11	海洋における放射性核種および微量元	
	素の物理化学的存在形態	91
表3.2.12	放射性核種の海水中における粒子状で	
	の存在割合の比較・・・・・	91
表3.2.13	重要放射性核種に対応する微量元素の	
	外洋水中濃度と物理化学的形態	92
表3.2.14	IAEAの「定義と勧告」再改訂版に	
	見られる分配係数(Kd)と濃縮係数	
	(Cf)	96
表3.3.1	大気中に存在する主な核種	101
表3.3.2	宇宙線生成核種の分布と地表大気中濃	
	度	109
表3.3.3	天然トリチウムの垂直分布	110
表3.3.4	*°Sr年間降下量と累積降下量	117
表3.3.5	**Sr降下量の緯度分布	118
表3.3.6	PuとAmの降下量および空気中濃度	
	の積算値	119
表3.3.7	種々の岩石に含まれる ⁴⁰ K, ²³⁸ Uお	
	よび ²³² Thの放射能濃度	120
表3.3.8	丘砂および関東ローム中の4°K,23*U,	
	および ²³² Thの放射能濃度	121
表3.3.9	日本各地の土壤中に含まれる い K,	
	²³⁶ Uおよび ²³² Thの放射能濃度	121

表3.3.10	日本の河川水中のU,Th,Raの含
	有量
表3.3.11	日本の河川水中の ^{239,240} P u 濃度 124
表3.3.12	ウラン,トリウムおよびアクチノウラ
	ン系列放射性核種の壊変型半減期と海
	水中濃度
表3.3.13	壊変系列を作らない1次天然放射性核
	種の海水中濃度
表3.3.14	宇宙線生成核種の海水中平均濃度 125
表3.3.15	プルトニウムの収支
表3.3.16	北太平洋中部海水中の¹³7cs,⁰°Sr
	および239,240Pu存在量
	(1980年~1982年)
表3.3.17	茨城沿岸表面海水中の放射性核種濃
	度
表3.3.18	沿岸表面海水中の放射性核種濃度 130
表3.3.19	沿岸海底堆積物中の放射性核種濃度 131
表3.3.20	茨城沿岸魚類の ¹³⁷ Cs濃度 131
表3.3.21	茨城沿岸海産生物の ¹³⁷ Сs濃度132
表3.3.22	茨城沿岸海藻の ¹³⁷ Cs(゚゚Sr)
	濃度
表3.3.23	教賀湾(浦底湾)のホンダワラの137Cs
	(°°Co) 濃度
表3.4.1	日常食中の゚゚Srおよび゙゙゙Cs分析
	結果
表3.4.2	秋田市内における食品群別' ³⁷ Csおよ
	び ^{239, 240} P u 摂取量······· 137
表3.4.3	食料需要表から得られた食品摂取量と
	放射性核種平均濃度
表3.4.4	ホウレンソウ表面についた放射性物質
	の水洗による除去率····································
表3.4.5	野菜表面の汚染除去による**Sェの減
表3.4.6	農産物中の放射性核種分析
表3.4.7	海産生物中の放射性核種分析値140
表3.4.8	
表3.4.9	那切換沿岸 思義者の 海座物を 通して 扱
	取する 広射 性 核 種 の 牛 核 収 重 く 推 た 個 り
	とALI (平焼収限度) との広 140 2220 - 2220 - たいてたと の始歩
表3.5.1	Kn,Knおよいてれらい版修
	理を収入することで生する平间天効緑 見い見
	重当重

第 4 章

表4.1.1	施設内のモニタリングと施設外のモニ	
	タリングの目 的集成	147
表4.1.2	環境放射線モニタリングの対象	148
表4.1.3	本書のモニタリング対象	148
表4.1.4	環境放射線モニタリングの傾向とその	
	対象	148
表4.1.5	線量推定法の精密さ,正確さの方向	149
表4.1.6	計測面では	149
表4.1.7	環境放射線モニタリングの基本目標	150
表4.1.8	53年1月「環境放射線モニタリングに	
	関する指針」の作成意図と方針	150
表4.1.9	環境放射線モニタリングの基本目標の	
	具体化と目標値との関連	150
表4.1.10	モニタリング指針(昭58.7)の具体的	
	目標	151
表4.1.11	環境放射線モニタリングの目標	
	(ICRP Pub.7) (参考)	152
表4.1.12	環境放射線モニタリングにおける地方	
	自治体と施設設置者との関連	153
表4.1.13	環境放射線モニタリングの条件	156
表4.2.1	環境に係わる安全確保の仕組みを時間	
	的に見れば	157
表4.2.2	環境放射線モニタリングに関連する各	
	県の協定等項目・・・・・	160
表4.2.3	各県における連絡の場	162
表4.2.4	モニタリングでよりどころとしている	
	指針など	163
表4.2.5	アセスメントとモニタリング	163
表4.3.1	モニタリング結果の評価	163
表4.3.2	ConservativeئRealistic،	164
表4.3.3	モニタリング値からの線量推定法の方	
	向	164
表4.3.4	線量の種類	165
表4.3.5	比較対象の基準など	166
表4.4.1	環境放射線モニタリングの具体的目的	
	(昭53.1モニタリング指針から)	170
表4.4.2	放出放射性物質の測定対象核種,測定	
	下限濃度および計測頻度・・・・・	171
表4.4.3	下限 濃度および計測頻度 対象とする環境試料と放射性核種	171 172
表4.4.3 表4.4.4	下限濃度および計測頻度 対象とする環境試料と放射性核種 通常観測	171 172 173
表4.4.3 表4.4.4 表4.4.5	下限濃度および計測頻度 対象とする環境試料と放射性核種 通常観測 特別観測	171 172 173 173

表4.4.7	空間放射線モニタリング地点配置と頻	
	度	176
表4.4.8	空間γ線の連続モニタ	177
表4.4.9	気象観測要素······	178
表4.4.10	G e 半導体検出器による定量可能レベ	
	ルの一例	180
表4.4.11	放射化学分析における供試量と定量可	
	能レベル (β線計測)量	181
表4.4.12	131 Iの各分析法における供試量と定	
	量可能レベル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
表4.5.1	手法	183
表4.5.2	放射性核種分析・元素分析における手	
	順などの評価項目	185
表4.5.3	評価基準	185

第 5 章

表5.1.1	モニタリング計画・・・・・	186
表5.1.2	環境放射線モニタリング設備の実際例…	189
表5.1.3	Ge半導体検出器による核種分析の検出	
	目標値	1 94
表5.1.4	全身線量が5mrem/yとなる食品中の核	
	種濃度	194
表5.2.1	各府県の調査報告書に見る空間放射線	
	および連続モニタリングの規模	199
表5.2.2	空間放射線線量および連続モニタリン	
	グの集約(1サイト当り)	200
表5.2.3	各府県の調査報告書に見る環境試料の	
	放射能モニタリングの規模	201
表5.2.4	環境試料の放射能モニタリングの集約…	202
表5.3.1	科学技術庁放射能測定法シリーズ	211
表5.3.2	放射化学分析における供試量と定量可	
	能レベル(β線計測)	217
表5.3.3	¹³¹ I の各分析法における供試量と定	
	量可能レベル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	218
表5.3.4	^{239, 240} P u 分析における供試量と定	
	量可能レベル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	218
表5.3.5	ゲルマニウム半導体検出器による定量	
	可能レベルの一例	218
表5.4.1	検出器の概要・・・・・	219
表5.4.2	環境γ線のモニタリングに用いられて	
	いるTLD	220
表5.4.3	放射線別測定法	220
表5.4.4	β線のエネルギー測定器の特徴	221

表5.4.5	N a I (Tℓ), G e (L i)両検出
	体によるスペクトルメータの比較 221
表5.4.6	基準γ線源の核種と核定数 225
表5.5.1	全β放射能測定結果(データ記録様式
	と記載上の注意)
表5.5.2	核種分析結果(データ記録様式と記載
	上の注意)
表5.5.3	環境放射線測定結果(データ記録様式
	と記載上の注意)
表5.5.4	地方自治体で使われている報告様式例… 234
表5.5.5	測定対象物に対する慣例的測定単位 238
表5.6.1	t (φ, α) 表
表5.6.2	最大値または最小値を検出するときの
	棄却限界 247
表5.6.3	ASTM:E178-61Tの棄却限界表… 248
表5.6.4	核実験後の松葉中の⁵'Mnの量 251

	第 6 章
表6.2.1	1 B q を経口摂取した場合の成人の実
	効線量当量 263
表6.2.2	1Bgを呼吸摂取した場合の成人の実
	効線量当量 264

表6.2.3	1 p C i を経口摂取した場合の成人の
	全身および臓器預託線量当量 268
表6.2.4	1 p C i を呼吸摂取した場合の成人の
	全身および臓器預託線量当量
表6.2.5	標準人の臓器(成人の臓器の質量と有
	效半径)
表6.2.6	標準の摂取量と排出量
表6.3.1	気象観測(通常観測)
表6.3.2	大気安定度分類表

第7章

表7.1.1	測定結果の変動要因
表7.1.2	放射性核種の存在
表7.1.3	気体廃棄物中の放射性希ガスの年度別
	放出実績······ 291
表7.1.4	気体廃棄物中の放射性ヨウ素('³'Ⅰ)
	の年度別放出実績
表7.1.5	液体廃棄物中の放射性物質(³Hを除く)
	の年度別放出実績
表7.1.6	液体廃棄物中のトリチウムの年度別放
	出実績

図目次

第 1 章

図1.1	放射線とエネルギー量子	2
図1.2	被曝のプロセス・・・・・	5
図1.3	放射線に関連する線量などの表現	7
図1.4	問題とする時間と被曝線量	8
図1.5	放射線防護上に用いられる線量用語	8

第 2 章

⊠2.2.1	1次宇宙線のエネルギースペクトル	11
⊠2.2.2	宇宙線各成分の高度変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
図2.2.3	宇宙線の地磁気緯度分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
⊠2.3.1	日本のバックグラウンド放射線の分布…	16
⊠2.4.1	ラドン(²²² Rn)娘核種濃度, ²⁰⁸ Tℓ,	
	²¹⁴Bi,⁴⁰Kおよび線量率の時間	
	変動	17
⊠2.4.2	異なる土壌乾燥度における大気中ラド	
	ン娘核種濃度と線束密度の関係	18
図2.4.3	散逸率1原子/c m・sの源に対する	
	²¹⁴ P b と ²¹⁴ B i 濃度の計算値	18
⊠2.4.4	地上1mでのラドン娘核種濃度と線量	
	率の関係と経験式	18
⊠2.5.1	土壌の深さごとに計算した地上1mに	
	おける全被曝線量率に対する天然放射	
	性核種の相対寄与・・・・・	21
⊠2.5.2	建築材料から生じる屋内線量率	22
⊠2.5.3	屋内と屋外の線量率の相関	22
⊠2.6.1	3インチ¢球型NaI(Tℓ)シン	
	チレータの宇宙線に対する応答	25
⊠2.7.1	1951年~1968年までの英国グループに	
	おける蓄積放射性降下物からの吸収線	
	<u>量</u> 率	26
⊠2.7.2	1963年10月における放射性降下物から	
	の強いr線成分を含むパルス波高スペ	
	クトル分布・・・・・	27
⊠2.7.3	低自然放射能の腐食土質原野での光子	
	エネルギースペクトル分布	27
⊠2.7.4	地表蓄積放射性降下物からの地上1m	
	における照射線量率の計算値と実測値	
	の比較	27
⊠2.7.5	放射性降下物の放射性核種の土中深度	
	分布	28

⊠2.8.1	スタック風下350mにおける''Arプ	
	リュームγ線の観測例	31
⊠2.8.2	スタック風下490m, 安定度Bにおけ	
	る風軸横断線上の''Arからの照射	
	線量率分布の変動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
図2.8.3	地面からの r 線成分を遮蔽し測定した	
	⁴¹ Αrプリュームγ線の連続測定結果…	32
図2.8.4	環境で観測された人工線源によるスカ	
	イシャインγ線	32
図2.8.5	タービンより200m離れた地点の10	
	cmダ×10cmNaI (Tℓ) ジン	
	チレーションスペクトロメータによる	
	パルス波高分布の測定例	33

第 3 章

図3.1.1	****Uの熱中性子および速中性子	
	(14MeV) による核分裂生成物の収率…	41
図3.1.2	原子力発電設備の概況	46
⊠3.1.3	原子力発電所立地図	48
図3.1.4	気体廃棄物処理系統説明図	53
図3.1.5	液体廃棄物処理系統説明図	54
図3.1.6	固体廃棄物処理系統説明図	55
図3.1.7	わが国の原子力発電所の液体廃棄物放	
	出量(除 ³ H)	56
図3.1.8	ピューレックス法の概略	63
図3.1.9	東海再処理工場の工程図・・・・・	63
図3.1.10	Sellafield再処理工場から液体廃棄物	
	中に放出された全α放射能	69
⊠3.1.11	Sellafield再処理工場から液体廃棄物	
	中に放出された全β放射能	69
図3.1.12	Sellafield再処理工場から液体廃棄物	
	中に放出された ¹³⁷ С s	69
⊠3.2.1	大気の区分	71
図3.2.2	低層大気の区分	71
⊠3.2.3	状態曲線と乾燥断熱線との関係	72
⊠3.2.4	温度勾配と煙の型との模式図	72
図3.2.5	パフモデルの一例	73
⊠3.2.6	水平拡散幅と垂直拡散幅	74
⊠3.2.7	主軸上の着地濃度の煙突高による変化	
	(中立の場合)	74

.

図3.2.8	主軸上の着地濃度の安定度による変化	図3
	(H=100m)の場合	図3
図3.2.9	平均東西流の緯度高度分布	
図3.2.10	平均子午面循環(12月~2月) 75	X 3
⊠3.2.11	緯度方向の拡散の計算例	X 3
⊠3.2.12	下部成層圏大循環のBrewer-Dobson	X 3
	モデル・・・・・ 76	図3
⊠3.2.13	空気塊の平均的移動	X 3
⊠3.2.14	重力沈降速度	図3
⊠3.2.15	ヨウ素の沈着速度のまとめ	
⊠3.2.16	沈着速度の測定値	図3
⊠3.2.17	Sehmelのモデルによる沈着速度の予	図3
	測值	
⊠3.2.18	Wet Removal過程のよび方 80	図3
図3.2.19	液滴の平衡半径と相対湿度との関係 81	
⊠3.2.20	雲によるエアロゾルの除去効率の計算	図3
	例	
⊠3.2.21	Washout係数と降雨強度の関係 83	図3
⊠3.2.22	雨滴によるエアロゾル粒子の拡散除去	図3
	の計算 83	
図3.2.23	雨によるエアロゾル粒子のOverall	X 3
	Scavenging Rateの計算例 83	
図3.2.24	いろいろな高度におけるエアロゾルの	図3
	平均滞留時間84	
⊠3.2.25	*°Srの帯水層内における移動の予測	X 3
	値と実測値との比較 85	
図3.2.26	C s の土壤中移動のカラム実験データ	
	と予測結果との比較 85	X 3
図3.2.27	放射性降下物 ゚゚S r の実測分布と予測	
	結果との比較	X 3
図3.2.28	降水量および降水と地下水中の ⁹⁰ Sr	図3
	濃度	図3
図3.2.29	コマツナによる I ⁻および I O ₅の生	図3
	育段階別吸収88	
図3.3.1	ラドン娘核種濃度の日変化の測定例101	図3
図3.3.2	ラドン濃度の時間変化	
⊠3.3.3	日本各地のラドン濃度の季節変化102	X 3
⊠3.3.4	ラドンの髙度分布の計算	
図3.3.5	ラドンの高度分布測定値の平均 103	X 3
図3.3.6	海岸から内陸への距離別に求めたラド	
	ン濃度の高度分布	図3
図3.3.7	大気境界層におけるラドンと短寿命娘	
	核種の垂直分布の計算	X 3

図3.3.8	f値とエアロゾル数密度との関係105
⊠3.3.9	自然のエアロゾル(A)とラドン娘核
	種エアロゾル(B)の粒度分布 105
図3.3.10	トロンと娘核種の垂直分布の計算106
⊠3.3.11	トロンの高度分布の測定例 106
図3.3.12	²¹² Pb(ThB)の季節変化 107
⊠3.3.13	²¹⁰ P b の大気中濃度の緯度分布 107
⊠3.3.14	²¹⁰ P b の雨水中濃度の緯度分布 107
⊠3.3.15	²¹⁰ P b の地表空気中濃度の季節変化
	(インド)
⊠3.3.16	²¹⁰ P bの地表空気中濃度の季節変化 … 108
図3.3.17	北半球中緯度における210Pb沈着量
	の経度依存性
図3.3.18	²¹⁰ P b の緯度-高度分布の計算値と
	測定值
⊠3.3.19	地表空気中の′Beと²²Na濃度の
	変化
図3.3.20	'Beと''N a の降下率の季節変化 110
図3.3.21	大陸性および海洋性観測地点における
	降水中トリチウム濃度の経年変化 111
⊠3.3.22	水蒸気中トリチウム濃度(pCi/ℓ)
	の変化(勝田市と東海村) 111
図3.3.23	空気中トリチウム濃度(pCi/m³)
	の変化(勝田市と東海村) 111
⊠3.3.24	トリチウム高濃度期(1963年7月)に
	おける降水中トリチウム濃度(TU)
	の地理的分布
⊠3.3.25	海上地点での降水中トリチウム濃度の
	緯度分布
⊠3.3.26	核実験開始以前のトリチウム濃度 113
⊠3.3.27	水蒸気中トリチウム濃度の高度分布 113
⊠3.3.28	HTOの混合比の高度分布 113
⊠3.3.29	対流圏および表面海水中の過剰はС
	の変化
図3.3.30	成層圏、対流圏および地上における過
	剰 ¹⁴ Cの変化
⊠3.3.31	1980年10月16日の大気圏内核爆発によ
	る対流圏フォールアウトの軌跡 115
⊠3.3.32	New York市における ^{**} Srの月間降
凶3.3.33	開北両半球における [™] Srの月間降ト
	重の変化
凶3.3.34	**Srの成層圏仔仕重の変化116

⊠3.3.35	*°Srの降水中濃度および降水によ	
	る降下量の季節変化	116
図3.3.36	**Sェの地表大気中濃度の変化	117
⊠3.3.37	^{*•} Srの降下 積算量(mCi/k㎡)	
	の地理的分布・・・・・	118
⊠3.3.38	⁰℃ s r の成層圏における分布, 1965年	
	3月~5月	119
⊠3.3.39	** Krの大気中濃度の測定値と予測	
	值	120
⊠3.3.40	日本各地の゚゚Srの年間降下量	122
⊠3.3.41	わが国における。『Sェの積算降下量	122
⊠3.3.42	日本の地域別,水田作土中の°°Sr	
	含量の比較	122
⊠3.3.43	日本各地の土壤中における放射性降下	
	物 ⁹ °Srの垂直移動の推移	123
⊠3.3.44	茨城県におけるフォールアウト゚゚Sr	
	の垂直分布・・・・・	123
⊠3.3.45	日本近海 海木*°Sr,¹³″Csの経年	
	変化	126
図3.3.46	北太平洋西部表面海水中の**Srと	
	¹³⁷ C s の分布	127
図3.3.47	太平洋東部表面海水(1982年~1983年)	
	の239.240Pu濃度と太平洋全域の	
	1960,1970年代の濃度	128
図3.5.1	成人男子群の ¹³⁷ Csによる全身内部	
	被曝線量の暦年変動	143
図3.5.2	¹³⁷ Cs内部被曝線量の加齢,性との	
	関係	144
図3.5.3	成人男子,完全母乳栄養児,完全人工	
	栄養児の ¹³⁷ Cs内部被曝線量の暦年	
	変動	144
⊠3.5.4	壮年期における成人男子の4°K内部被	
	曝線量と加齢の関係	145
図3.5.5	**K内部被曝線量と加齢,性の関係…	145
図3.5.6	経ロ摂取した'³' Ι 標識ヨウ化ナトリ	
	ウムの甲状腺による摂取率の変化	145

第4章

⊠4.2.1	モニタリング実施体制	158
⊠4.3.1	RealisticとConservativeの比較	165
⊠4.4.1	深層防護方式	166
⊠4.4.2	環境放射線モニタリング計画立案手順…	168

第5章

	•1 1	
⊠5.1.1	環境放射線モニタリング施設の実際例…	188
⊠5.1.2	放射性気体廃棄物と人体被曝の主経路	
	と調査対象項目・・・・・	191
図5.1.3	放射性液体廃棄物と人体被曝の主経路	
	と調査対象項目・・・・・	192
⊠5.1.4	代表的なテレメータシステム(福井県	
	の例)	193
図5.2.1	空間放射線測定地点(鹿児島)	203
図5.2.2	空間放射線測定地点(福井全県)	204
図5.2.3	TLD測定地点図(静岡) ······	205
図5.2.4	積算線量測定地点(敦賀地区)	206
図5.3.1	試料採取地点設定	216
⊠5.4.1	積分型モニタの設置	223
図5.4.2	NaI(Tℓ)シンチレーション検出	
	器の増幅度の時間変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	223
図5.4.3	Chiltonなどの半実験的結果(曲線)	
	と測定結果	224
図5.5.1	定点観測結果	228
図5.5.2	環境試料の測定フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	229
図5.6.1	度数分布図と度数分布曲線	240
図5.6.2	空間線量1時間値,1ヵ月分	
	(n = 7 4 4)の度数分布	240
図5.6.3	正規分布と確率・・・・・	241
⊠5.6.4	正規分布の累積分布関数	241
図5.6.5	空間線量1時間値の時刻別平均値	242
図5.6.6	空間線量1時間値の日別平均値	242
図5.6.7	空間線量1日値,1年分(n=363)	
	の度数分布	242
図5.6.8	空間線量1日値の毎月の度数分布	243
⊠5.6.9	空間線量1日値の月別平均値	242
⊠5.6.10	度数分布図	249
⊠5.6.11	235 Uの熱中性子による核分裂に際して	
	放出される主な核種と分裂後の放射能	
	の推移	250

⊠5.6.12	7線照射線量率の月変化モニタリン	
	グステーション・・・・	251
⊠5.6.13	降雨によるγ線とプリュームからのγ線	
	の分離	252

第6章

⊠6.2.1	大気中に放出された放射性物質と人	
	との間の簡単化された経路	260
図6.2.2	地中または表面水(海洋も含む)に放	
	出された放射性物質と人との間の簡単	
	化された経路	260
図6.2.3	呼吸摂取放射性物質の体内移行割合	267

図6.2.4	経ロ摂取放射性物質の体内移行割合	267
図6.3.1	у 方向拡がりのパラメータ(σу)	273
図6.3.2	z 方向拡がりのパラメータ(σ z)	273
図6.3.3	風下軸上照射線量率分布図	277
図6.3.4	風下軸上地表濃度分布図	277
図6.3.5	等照射線量率分布図	278
⊠6.3.6	地表等濃度分布図	278

第7章

図7.1.1	JRR-2から放出された''Arに	
	よる照射線量率の変化・・・・・・	286