CONTENTS ## PART I | I. FORMS AND DESCRIPTIONS | | |---|-----------------| | 1. Forms described in the photographic atlas | 1 | | 2. Description of some auroral displays | 5 | | II. GEOGRAPHICAL DISTRIBUTION OF AURORAE. THE NORTHERN AND SOUTHERN AURORA BELTS. THE MOTION OF AURORA DURING THE NIGHT AND DURING MAGNETIC STORMS. PERIODS OF AURORA | | | 3. Geographical distribution of aurora. Aurora belts | 14 | | 4. The motion of the aurora towards the tropics during great magnetic storms | 17 | | 5. The simultaneous occurrence of Northern and Southern Lights | 18 | | 6. The connexion between great aurorae and magnetic storms. Early researches by Celsius, Hiorter, and Wilcke. Bartels's diagrams of the magnetic three- | 18 | | hour indices K | $\frac{10}{25}$ | | 7. The periods and variation with time of the aurora | 25 | | III. METHODS OF OBSERVING AND PHOTOGRAPHING AURORAE | | | 8. Schemes for visual observation | 33 | | 9. The problem of photographing the aurora | 36 | | IV. VISUAL AND PHOTOGRAPHIC METHODS OF DETERMINING HEIGHT AND POSITION OF THE AURORA | | | 10. Early attempts to determine height and position of the aurora by visual observations | 40 | | 11. The photographic method of finding height and position of an aurora. Amount of material collected | 41 | | V. THE METHOD OF MEASUREMENT OF THE PLATES. METHODS USED TO SIMPLIFY THE WORK | | | 12. Historical remarks | 45 | | 13. Formulae for H and D | 46 | | 14. Formulae from spherical trigonometry to find the angles necessary for calculating H and D | 48 | | 15. Maurer-Becker nomograms for solving spherical triangles | 51 | | 16. Remarks on the practical use of Becker's nomograms for aurora researches | 54 | | 17. Practical methods of finding t , g , δ_0 , and t_0 using a calculating machine | 55 | | 18. Construction of nets for use in determining the coordinates of the selected aurora points | 56 | | 19. Graphical methods for the determination of r , H , and D | 59 | | 20. Continuation of the projection method described in section 12 | 62 | | 21. The case of sunlit aurorae | 65 | | | | | VI. RESULTS OF THE MEASUREMENTS OF AURORA PLATES FROM REGIONS NEAR THE NORTHERN AURORA BELT. | | |---|-----| | | 67 | | 22. Results from the author's expeditions to Bossekop in 1910 and 1913 | 01 | | 23. The results of the height measurements by Krogness and Vegard at Bossekop (1912–13) and Haldde (1913–14) | 72 | | 24. Studies of aurorae made by Harang and Tönsberg from the aurora observatory at Tromsö in the year 1929–30 and later | 74 | | 25. On an auroral arc with deep crimson lower border penetrating to between 60 and 70 km over the earth, observed by Harang and Bauer on 8 March 1932 | 80 | | 26. Work by Krogness and Tönsberg with base line Bossekop-Haldde of 12·35 km. Height and motion of forms DS and PS | 80 | | VII. MEASUREMENTS OF AURORAE NOT SITUATED NEAR THE AURORA BELTS | | | 27. Measurements of aurorae made by the French-Norwegian Micardbu expedition to north-eastern Greenland, in collaboration with the Danish expedition | 81 | | 1938–9 to the same region | 83 | | 28. Preliminary results from Thule during the polar year 1932–3 | 00 | | 29. Observations and photographic measurements of aurorae from New Zealand made by the late M. Geddes | 83 | | VIII. RESULTS OF OBSERVATIONS AND PHOTOGRAPHIC WORK IN SOUTHERN NORWAY FROM 1911-52 30. Material collected | 89 | | 31. Distribution of the heights of all the measured auroral points from 1911-44 | 91 | | 32. Height and geographical position of homogeneous auroral arcs HA | 92 | | 33. Height and geographical position of bands with ray structure RB | 104 | | 34. Height and geographical position of cloudlike aurora DS | 107 | | 35. Auroral rays in the dark atmosphere and some height statistics of them | 111 | | 36. Observations and measurements of other auroral forms | 111 | | 37. Isolated pulsating arcs | 111 | | 38. Pulsating spots. Their periods | 114 | | 39. Split and rapidly pulsating arcs | 118 | | 40. The remarkable cloudlike aurora on 3 January 1940 | 119 | | 41. Remarkable auroral arc of short isolated rays photographed by Westin from Trondheim on 24 March 1936 | 122 | | 42. Remarkable quiet auroral bands, RB, with ray structure on 7–8 January 1937 | 123 | | 43. Exceptionally high auroral rays on 22-23 March 1920 | 126 | | 44. On a remarkable grey-violet auroral curtain with rays in sunlight observed on 8 September 1926 | 126 | | IX. GENERAL REMARKS ON SUNLIT AURORA | | | 45. The position of sunlit rays relative to the earth's shadow line. Frequency | | | and colour | 128 | | 46. The divided auroral rays | 132 | | 47. Sunlit auroral arcs | 132 | | | CONTENTS | xiii | |------------|---|------| | | HE INTENSITY AND COLOUR OF THE AURORA AND ASSOCIATED PHENOMENA. MOVING AND COLOUR PICTURES OF THE AURORA | | | 48. | The intensity of the aurora | 135 | | 49. | A case of aurora seen in full daylight | 135 | | 50. | Peculiar sounds associated with the most intense aurora | 137 | | 51. | Remarks on the numerous observations of intense aurorae penetrating to lower levels than the photographic measurements have hitherto shown | 139 | | 52. | Moving and colour pictures | 140 | | XI. T | THE COLOUR OF THE AURORA | | | | The colour of the different auroral forms | 142 | | 54. | Remarkably rapid changes in the colour of rays from blue-green to red all over | 143 | | | THE VISUAL AND PHOTOGRAPHIC MEASUREMENTS OF THE AURORAL SPECTRUM | | | 55. | Historical remarks | 145 | | 56. | Typical auroral spectra | 146 | | 57. | The common yellow-green aurora line 5577 Å | 147 | | 58. | The red oxygen lines 6300, 6364, and 6391 Å | 147 | | 59. | The hydrogen lines H_{α} , H_{β} , and H_{γ} | 148 | | | The Doppler effect of the hydrogen lines and their shift towards the violet, found by Vegard | 150 | | 61. | The great shift towards the violet of the hydrogen line H_{α} found by Meinel during the great aurora 18–20 August 1950 | 152 | | 62. | Supplementary researches by Gartlein and Vegard | 154 | | 63. | The other lines in the auroral spectrum | 158 | | 64. | Vegard's spectrograms taken in Oslo 23–24 February 1950 and in Tromsö during the winter 1950–1 | 158 | | 65. | Recent results from spectrographic researches by Meinel at Yerkes Observatory in U.S.A. and by Petrie at Saskatoon in Canada | 160 | | 66. | Variations of the auroral spectrum with auroral form, height, latitude, and other conditions | 161 | | 67. | The mechanism of emission of the auroral light | 163 | | | The method used by Vegard to determine the temperature in the auroral region | 163 | | 69. | Some results obtained by photographic height measurements combined with simultaneous photographs of auroral spectra | 164 | | 70. | Collaboration between Professor Berkey and Norwegian aurora specialists to obtain simultaneous height measurements and spectra with a grating spectrograph of high dispersion | 166 | | XIII | SPECTRA OF SUNLIT AURORAL RAYS | | | | Spectra of sunlit auroral rays obtained in 1929, 1936, and 1938. Their possible polarization | 167 | | XIV. | RADIO WAVES OF 10-CM WAVELENGTH EMITTED BY THE | | 72. The observations by Forsyth, Petrie, and Currie from Saskatoon in 1949 171 AURORA | XV. POSSIBLE MEASUREMENTS OF CORPUSCULAR CURRENTS OUTSIDE THE EARTH'S ATMOSPHERE | | |---|-----| | 73. Interest of experiments | 173 | | 74. Wireless echoes of long delay | 173 | | 75. Further observations of echoes | 177 | | 76. Various attempts to give a theoretical explanation of the wireless echoes | 178 | | of long delay 77. The position of the sun when echoes were heard | 180 | | 78. Recent attempts to obtain echoes of long delay | 181 | | 79. Some suggestions for new researches on wireless echoes of long delay | 182 | | XVI. WIRELESS ECHOES FROM THE AURORA | | | 80. Introduction | 183 | | 81. Echoes observed at the Jodrell Bank experimental station near Manchester | 183 | | 82. Echoes observed from Saskatoon, Canada | 184 | | 83. Echoes observed from Kiruna, northern Sweden | 185 | | 84. Echoes observed from Tromsö and Kjeller, near Oslo, in the winter 1952–3 with remarks regarding their origin | 186 | | XVII. EVIDENCE OF STREAMS OF CORPUSCLES BETWEEN THE SUN AND THE EARTH BY DOPPLER EFFECT OF ABSORPTION LINES IN THE SOLAR SPECTRUM | | | 85. Researches by Richardson, Brück, and Ruttlant | 188 | | XVIII. ABSORPTION OF CORPUSCULAR RAYS IN THE ATMOSPHERE 86. Introductory remarks | 190 | | 87. Information necessary for solving the problems of the penetration and | | | luminosity of corpuscular rays when they produce what we call the aurora | | | 88. Formula for the pressure as a function of height. Scale height | 191 | | 89. Lenard's absorption formula for cathode rays penetrating from space down into the atmosphere | 192 | | 90. The author's researches of 1912 | 194 | | 91. A method of determining the temperature from the length of auroral rays | 194 | | 92. Further researches in 1921 by Vegard and the author | 195 | | 93. Vegard's latest results regarding the absorption of electrons and protons in the upper atmosphere | 198 | | 94. Harang's researches on what he calls the luminosity curve of the aurora, which furnish a method of finding the scale height | 199 | | 95. Some results of the recent experiments with V2 and other rockets reaching heights of some hundred kilometres | 200 | | 96. Concluding remarks | 203 | | XIX. EMISSION OF ELECTRIC CORPUSCLES FROM THE SUN | | | 97. Introduction | 205 | | 98. Solar eruptions, radio fade-outs, and subsequent aurorae. Carrington's discovery | 205 | | 99. Aurorae not related to solar flares. M-regions | 207 | | CONTENT | cs | |---------|----| |---------|----| $\mathbf{x}\mathbf{v}$ ## PART II | I. FU | NDAMENTAL PROBLEM. DIFFERENTIAL EQUATIONS | | |--------|--|-----| | 1. | The first ideas before Birkeland's experiments | 209 | | 2. | Birkeland's experiments | 210 | | 3. | Experiments by Villard, Brüche, and Malmfors | 212 | | 4. | Mathematical problems to solve. Simplifying assumptions | 212 | | 5. | The differential equations of motion of an electric corpuscle in a magnetic field | 214 | | 6. | The equations of motion in the case of a magnetic dipole. Reduction by means of a new unit of length | 216 | | 7. | A second 'first integral' of the equations of motion | 218 | | 8. | The problem of integration | 219 | | 9. | Other forms for the differential equations useful for the discussion and the numerical calculation of the trajectories | 223 | | | ESULTS OBTAINED BY DIRECT STUDY OF THE DIFFERENTIAL EQUATIONS | | | 10. | Geometrical interpretation of the equation for $d\phi/ds$. Allowed and forbidden regions | 229 | | 11. | Discussion of the curves $[\gamma, \kappa]$ and of the allowed regions q_{γ} and Q_{γ} | 231 | | 12. | Some general remarks on the trajectories defined by the equations (6.4) | 239 | | 13. | Some general properties of the trajectories | 239 | | 14. | Method of discussion using the coordinates R , z , and φ | 242 | | III. S | SPECIAL FAMILIES OF ORBITS | | | 15. | Orbits and trajectories passing through the origin | 247 | | 16. | Other families of orbits in the Rz-plane | 248 | | IV. I | NUMERICAL INTEGRATIONS | | | 17. | The method used. Numerical integration of systems of differential equations of the second order | 255 | | 18. | Application of the results of numerical integration to the trajectories | 260 | | 19. | Example of numerical integration using the system (9.15) | 261 | | v. I | TUITIVE METHOD OF CONTROL | | | 20. | Geometrical-mechanical method for checking and discussing the orbits in the R_1z_1 -plane | 264 | | VI. S | SOME RESULTS OF THE NUMERICAL INTEGRATIONS | | | 21. | Orbits in the Rz -plane passing through the origin discussed in the field $U={ m constant}$ | 269 | | 22. | The corresponding trajectories in space going to the dipole | 278 | | 23. | Trajectories in the vicinity of the trajectories through the origin (dipole) | 279 | | 24. | Alfvén's perturbation method | 284 | | VII. | APPLICATION OF THE MATHEMATICAL THEORY TO PHYSICAL EXPERIMENTS | | | 25. | Introduction of the 'stiffness' $H\rho$ of the corpuscle against magnetic action | 288 | | | Application to some of Birkeland's experiments | 289 | | | Application to some experiments of Villard, Brüche, and Malmfors | 290 | | | | | | VIII. APPLICATION TO THE POLAR AURORA | | |---|------------| | 28. Introduction. Values of $H\rho$, v , V , and the unit C_{st} | 292 | | 29. Regions of precipitation of auroral corpuscles. Southern limit of aurora borealis | 294 | | 30. Limit of the auroral regions on the side of the geomagnetic poles. The belts of maximum frequency of the aurora | 297 | | 31. Explanation of the occurrence of the aurora during the night. The case of a bundle of trajectories corresponding to the same value of the constant γ | 299 | | 32. Distinguished directions. Importance of the study of the trajectories through the origin in explaining the forms and development of aurorae | 302 | | 33. The rapid variations of the aurora. Occurrence of the same auroral form on two consecutive nights almost at the same hour | 306 | | 34. Possible explanation of the fact that the aurora has a tendency to recur after 27 days | 307 | | 35. Explanation of long and narrow ares with ray structure | 307 | | 36. Numerical example of the formation of a long and narrow arc | 313 | | 37. Explanation of the horseshoe-like auroral curtains | 319 | | 38. The application of the method to non-homogeneous bundles of trajectories to explain auroral forms | 323 | | 39. Explanation of the quiet homogeneous arcs HA | 323 | | 40. The transition of a homogeneous are HA into an arc with ray structure RA | 325 | | 41. Explanation of auroral rays | 327 | | 42. Explanation of auroral draperies | 331 | | 43. Explanation of other auroral forms | 332 | | IX. WHAT THE MATHEMATICAL THEORY CAN OR CANNOT EXPLAIN
44. Auroral phenomena which may be explained by the corpuscular theory in its
original form and others which may not be so explained | 335 | | X. FURTHER DEVELOPMENT OF THE CORPUSCULAR THEORY ACHIEVED BY DISCARDING THE SIMPLIFYING ASSUMPTIONS ONE AFTER THE OTHER SO AS TO APPROACH THE ACTUAL CONDITIONS IN NATURE | | | 45. Introductory remarks | 338 | | 46. The action on a single corpuscle of neighbouring corpuscles when they are sent out from the sun simultaneously as a cloud or a stream | 338 | | 47. Vegard's hypothesis of a stream where the velocities of positive and negative corpuscles are different | 339 | | 48. Action of an external ring current on the situation of the aurora belts | 340 | | 49. Equations of motion in the case where the magnetic field is symmetric round the z -axis | 340 | | 50. Some useful properties of the function ϕ | 343 | | 51. The case of a single current in the xy-plane | | | 52. Results of the discussion | 344 | | 53. On the trajectories in the magnetic dipole field when the corpuscles move | 344
345 | | under the additional action of a central force inversely proportional to the | 345 | | under the additional action of a central force inversely proportional to the square of the distance, and emanating from the dipole | 345
346 | | under the additional action of a central force inversely proportional to the | 345 | | CONTENTS | xvii | |---|-------------| | 56. The case of solar magnetism | 358 | | 57. The magnetic field of the earth according to the complete Gaussian series | 359 | | 58. The remaining dropped assumptions | 36 0 | | XI. OTHER AURORA THEORIES | | | 59. The theory of Chapman and Ferraro | 362 | | 60. The theory of Martyn | 363 | | 61. The theory of Alfvén | 367 | | 62. Further theories of aurora | 372 | | XII. OTHER APPLICATIONS OF THE MATHEMATICAL RESEARCHES | | | INTO THE MOTION OF ELECTRIC CORPUSCLES IN THE FIELD OF A MAGNETIC DIPOLE | | | 63. Introductory remarks | 374 | | 64. Application to cosmic rays. Introduction | 374 | | 65. Allowed and forbidden regions according to the mathematical theory | 376 | | 66. The forms of the differential equations used during the detailed studies of | | | the trajectories | 376 | | 67. Short summary of the work by Lemaître, Vallarta, and their pupils | 378 | | 68. The author's work on the theory of cosmic rays coming from an infinite distance | 901 | | 69. Application to the streams in the solar corona during minima of solar | 381 | | activity and method of finding the general magnetic field of the sun | 384 | | 70. Application to the Eschenhagen oscillations of the earth's magnetism | 387 | | XIII. CONCLUDING REMARKS | | | 71. References to topics not included in this book | 388 | | LIST OF NAMES | 393 | | LIST OF SUBJECTS | 396 | | | 390 | | PAPERS AND NEWS ON AURORA | 400 | Figures 1-16, 29-34, 83, 85, 91, 95-96, 101-4, 113-16, 123-4, 126, 142, 149-51, 154, 156-64, 174, 184-5, 191-3, 206-7, and 212-13 appear as separate plates at the end of the book.