Fundamental Processes

Ian Brown

1.	Intr	oduction	1
2.	Basi	c Plasma Parameters	2
	2.1	Plasma Density, Degree of Ionization, and Temperature	2
	2.2	Distribution Functions; Means	4
	2.3	Collisions	5
	2.4	Plasma Frequency	6
3.	Ionization Phenomena		
	3.1	Electron Impact Ionization	7
	3.2	Multiple Electron Removal; Single-Step and Multistep	
		Ionization	8
	3.3	Surface Ionization	10
	3.4	Field Ionization	12
	3.5	Ion Impact Ionization	12
	3.6	Photoionization	13
	3.7	Negative Ions	14
4.	The	Plasma Boundary	14
5.	Mag	gnetic Field Effects	16
	5.1	Gyromotion	16
	5.2	Magnetic Confinement	18
	5.3	Magnetic and Plasma Pressure	19
Refe	rence	·s	20

Chapter 2

CHARACTERIZATION OF ION SOURCES INTRODUCTION

B. H. Wolf

Introduction			
2.1	Cathodes		
2.2	Electron Bombardment Ion Sources		
2.3	Plasmatron Ion Sources		
2.4	Magnetron and Freeman Types Ion Sources		
2.5	Penning Ion Sources		
2.6	Multicusp ("Bucket" Type) Ion Sources		
2.7	Rf Ion Sources		
2.8	Microwave and ECR Ion Sources ≤2.4 GHz109 B. H. Wolf		
2.9	ECR Ion Sources >2.4 GHz		
2.10	Laser Ion Source		

2.11	EBIS and EBIT: Electron Beam Ion Source/Trap157 R. Becker
2.12	Vacuum Arc Ion Sources
2.13	Large Area Ion Sources
2.14	Industrial Ion Sources and Ion Source Applications
2.15	High Brightness Field Ionization and Field Evaporation (Liquid-Metal) Ion Sources
2.16	Negative-Ion Sources
2.17	Surface and Thermal Ionization Ion Sources
2.18	High Efficiency Ion Sources
2.19	Other Ion Sources

PRODUCTION OF IONS FROM NONGASEOUS MATERIALS

B. H. Wolf

Intro	ducti	on	331
1	Methods of Ion Production from Solids		332
	1.1	Evaporation	332
	1.2	Chemical Compounds	335
	1.3	On-line Chemical Synthesis	335
	1.4	Sputtering	338
	1.5	Vacuum Arc and Laser Evaporation	341
		•	
2	Materials for Oven and High-Temperature Ion Source Design		341
	2.1	High-Temperature Metals	344
	2.2	High-Temperature Insulators	345
	2.3	Corrosion and Alloying	347
	2.4	Oven Design Criteria	348
	2.5	Examples of Oven Design	350
3	Tem	perature Control	353
4	Exai	nples of Metal Ion Sources	356
References			

Chapter **4**

BEAM FORMATION AND TRANSPORT

P. Spädtke

1	Bear	m Formation	
	1.1	Extraction from Fixed Emitters	
	1.2	Extraction from Plasma Sources	
	1.3	Extraction in Axial Magnetic Fields	
	1.4	Extraction in Transverse Magnetic Fields	
	1.5	Extraction of Negative-Ion Beams	
	1.6	Electrode Alignment	
		0	
2	Beam Transport		
	2.1	Drift Space	
	2.2	Electrostatic Focusing	
	2.3	Magnetic Focusing	
	2.4	Comparison of E and B Deflection	
	2.5	Combinations of E and B Focusing	
	2.6	Plasmaoptical Devices	
	2.7	Beam Uniformity	
	2.8	Space Charge Effects	
	2.9	Beam Compensation	
		-	
Refe	erence	95	

Ion Beam Diagnosis

P. Strehl

1	The Most Important Ion Beam Parameters	
2	Beam Current Measurements	
	2.1 Faraday Cup	
	2.2 Calorimetric Measurements	399
	2.3 Beam Current Transformers	
3	Beam Profile Measurements	
	3.1 Viewing Screens	
	3.2 Profile Grids, Scanning Devices	
	3.2.1 Maximum Applicable Beam Current	
	3.2.2 Minimum Required Beam Current	
	3.3 Residual Gas Ionization Monitors	
4	Measurements in the Transverse Phase Space	426
	4.1 Destructive Measurement Methods	
	4.2 Nondestructive Methods	
5	Measurements in the Longitudinal Phase Space	
Ackn	owledgment	
Refer	rences	445

Chapter 6

ION SOURCE ELECTRONICS AND MICROWAVE GENERATORS FOR ION SOURCES

H. Horneff F. Bourg

1	Introduction
2	Power Supplies
3	Pulse Switch with Vacuum Tubes459
4	Pulse Switch with Transistors462
5	Pulse Switch with IGBTs465
6	Constant-Current Pulse Generator with Semiconductors
7	High-Voltage Trigger Generator
8	Pulse Line for MEVVA Ion Sources
9	Extraction and High-Voltage Power Supplies474
10	Control and Test Electronics
11	Microwave Electronics: The High Power Generators48811.1General Description48811.2Microwave Oscillators49011.2.1Mechanically Tuned Oscillators49011.2.2Phase-Locked Frequency Sources49011.2.3Frequency Synthesizers49211.3Microwave Integrated Circuit492
	11.4 Automatic Level Control Loop

12	Micro	wave Tubes	494
	12.1	The Magnetron	494
		12.1.1 Characteristics	497
	12.2	Klystron	497
		12.2.1 The Power Supply — High Voltage	
	12.3	Gyrotron Tubes	
	12.4	Traveling Wave Tube (TWTs)	
		12.4.1 Power Supply	504
13	Micro	wave Window for rf Power Injection into the Ion Sources	504
14	Trans	mission Lines	505
	14.1	Rectangular Waveguides	
		14.1.1 Attenuation and Losses in the Waveguide	507
		14.1.2 Flanges	509
	14.2	Circular Waveguide	509
	14.3	Coaxial Transmission	510
	14.4	Ridge Waveguides	510
	14.5	Isolating Flange	512
	14.6	Transition Waveguide to Coax	512
15	Stub 7	Րuner	514
16	Hazar	ds Caused by Microwave Radiation	514
17	Power	r Measurements	515
Refe	ences .		516

1 INTRODUCTION

To run an ion source several power supplies and other electronic equipment are necessary. For many dc-operated ion sources commercial power supplies can be used. For a duoplasmatron, for example, or for other low-voltage arc ion sources, commercially available current-regulated power supplies are well suited for maintaining a stable arc plasma even without an additional series resistor. But inexpensive power supplies without electronic regulation can also be used to run ion sources in a dc mode. Such power supplies are discussed in Section 2.

If, on the other hand, pulsed mode operation of the ion source is required, then the necessary pulse switches have to be laboratory-made. Several examples of pulse switch designs are presented in the following sections.

For ion extraction at voltages of up to several tens of kilovolts, commercially available power supplies are well suited. For a few special applications, pulsed extraction is needed. Some examples are presented in Section 8.

The environment of the ion source electronics is dominated by high voltages of up to several hundred kilovolts. In many cases the entire ion source equipment package is on a platform at several hundred kilovolts and the ion source power supplies themselves are at an additional potential of several tens of kilovolts (see Figure 1). High-voltage sparks and breakdowns, which are sources of voltage spikes that can interfere with the electronics in the area, are unavoidable. Additionally, ion

Computer Codes

P. Spädtke

CONTENTS

1	General Solution of Maxwell's Equation		
2	Laplace Solver		
3	Poisson and Vlasov Solver3.1Fixed Emitter3.2Plasma Sources3.3Plasma Effects	520 521 521 521	
4	Magnetic Fields	521	
5	Trajectory Codes		
6	Particle-in-Cell Codes		
7	Numerical Methods7.1FDM — Finite Difference Method7.2FEM — Finite Element Method7.3Solver7.4Integration Methods for Particle Motion		
8	Diagnosis		
Refe	rences		

A compendium of computer codes used in particle accelerator design has been compiled in Reference 1. Here the general approach is described.

The codes described here run on large mainframe computers; however, the hardware improvement of small computers today has reached a level that makes it possible to implement most of these codes on a PC. The memory of these small computers can be expanded to several MB, which was not an easy task just several years ago even on a large computer. CPU performance has been improved as well,