Inhalt

1. Einleitung	1
2. Theoretische Grundlagen	2
3. Das Berechnungsverfahren	4
4. Die Rechenergebnisse	6
Beschreibung der Modellvorstellungen	11
Literatur	22

Diagramme

Strahlungsdruck und Druck der materiellen Teilchen		Luft-Kohlenstoff-Plasma	
als Funktion der Temperatur Fig. 1	25	(10 %, 25 %, 50 % und 75 % C), Modell I	
		Zusammensetzung von Luft-Kohlenstoff-Plasma, Modell I Gesamtdruck: 100: 10: 1: 0.1: 0.01 und 0.001 bar	
		Fig. 27–32 (10 % C)	51-55
Luft Disense		Fig. 42–47 (25 % C)	65–69
Lutt-Plasma		Fig. 57-62 (50 % C)	79–83
Zusammensetzung von Luft-Plasma Modell I		Fig. 72–77 (75 % C)	93–97
Gesamtdruck: 1000: 100: 10: 1: 0.1 und 0.01 bar		Zusammensetzung von Luft-Kohlenstoff-Plasma.	
Fig. 2–7	26-31	Modell I, als Anzahl der Teilchen im m ³ ,	
		Gesamtdruck 1 bar	
Zusammensetzung von Luft-Plasma, Modell I, als		Fig. 33 (10 % C)	56
Anzahl der Teilchen im m ³ ; Gesamtdruck 1 bar		Fig. 48 (25 % C)	70
Fig. 8	32	Fig. 63 (50 % C)	84
Enthalnie-Entronie-Diagramm		Fig. 78 (75 % C)	98
für Luft-Plasma, Modell I		Puttoluis Patanis Diamana fin Luft Kohlonotoff Diam	
Fig. 9	33	Enthalpie-Entropie-Diagramm für Luit-Kohlenstoll-riasi	18,
	•••	$\mathbf{Fig} = 24 (10 \% C)$	57
Zusammensetzung von Luft-Plasma, Modell II		Fig. 54 (10 % C)	71
Gesamtdruck: 1000; 100; 10; 1; 0,1 und 0,01 bar	24 20	Fig. 64 (50 % C)	85
Fig. 10–15	34-39	Fig. 79 (75 % C)	99
Zusammensetzung von Luft-Plasma, Modell II, als		Enthelmin in 1-1/20 für Luft Kohlenstoff Disson	
Anzahl der Teilchen im m ³ ; Gesamtdruck 1 bar		Modell I	
Fig. 16	40	Fig. 35 (10 % $($)	58
Enthalnia Entronia Diagramm		Fig. 50 (25 % C)	72
für Luft-Plasma Modell II		Fig. 65 (50 % C)	86
Fig. 17	41	Fig. 80 (75 % C)	100
		Enthalnie in k I/m ³ für I uft-Kohlenstoff-Plasma	
Enthalpie in kJ/kg für Luft-Plasma, Modell I und II	40	Modell I	
Fig. 18	42	Fig. 36 (10 % C)	59
Enthalpie in kJ/m ³ für Luft-Plasma, Modell I und II		Fig. 51 (25 % C)	73
Fig. 19	43	Fig. 66 (50 % C)	87
		Fig. 81 (75 % C)	101
Entropie in kJ/kg K für Luft-Plasma, Modell I und II		Entropie in kI/kg K für Luft-Kohlenstoff-Plasma,	
Fig. 20	44	Modell I	
Freie Enthalpie in kJ/kg für Luft-Plasma,		Fig. 37 (10 % C)	60
Modell I und II		Fig. 52 (25 % C)	74
Fig. 21	45	Fig. 67 (50 % C)	88
Dickts in Indus Sin Luft Discuss Madell Lund II		Fig. 82 (75 % C)	102
Dicate in kg/m ³ fur Luit-Plasma, Modell I und II	16	Freie Enthalpie in kJ/kg für Luft-Kohlenstoff-Plasma,	
r ig. 22	40	Modell I	
Kompressibilitätsfaktor für Luft-Plasma, Modell I und II		Fig. 38 (10 % C)	61
Fig. 23	47	Fig. 53 (25 % C)	75
In minimum groups of Gim I with Discuss - Mandall I want II		Fig. 68 (50 % C)	89
Fig. 24	40	Fig. 83 (75 % C)	103
1 lg. 24	40	Dichte in kg/m ³ für Luft-Kohlenstoff-Plasma, Modell I	
Verhältnis der effektiven spezifischen Wärmen		Fig. 39 (10 % C)	62
für Luft-Plasma		Fig. 54 (25 % C)	76
Fig. 25 (Modell I)	49	Fig. 69 (50 % C)	90
rig. 26 (Modell II)	50	Fig. 84 (75 % C)	104

IX

Kompressibilitätsfaktor für Luft-Kohlenstoff-Plasma, Modell I

Fig. 40 (10 % C)	63
Fig. 55 (25 % C)	77
Fig. 70 (50 % C)	91
Fig. 85 (75 % C)	105

Ionisierungsgrad für Luft-Kohlenstoff-Plasma, Modell I

Fig. 41 (10 % C)	64
Fig. 56 (25 % C)	78
Fig. 71 (50 % C)	92
Fig. 86 (75 % C)	106

Zahl der freien Elektronen im m³ für Luft-Kohlenstoff-Plasma und für Luft-Plasma, Modell I Gesamtdruck: 100; 10; 1; 0,1; 0,01 und 0,001 bar Fig. 87

Kohlenstoff-Wasserstoff-Plasma

|--|

Zusammensetzung von Kohlenstoff-Wasserstoff-Plasma, Modell I, Gesamtdruck: 1000; 100; 10; 1; 0,1 und 0,01 bar Fig. 88- 93 (C:H = 1:1) 108-113

100 115
123-128
138-143
153-158

Zusammensetzung von Kohlenstoff-Wasserstoff-Plasma,	
Modell I, als Anzahl der Teilchen im m ³ ,	
Gesamtdruck 1 bar	
Fig. 94 (C:H = 1:1)	114
Fig. 109 (C:H = 1:2)	129
Fig. 124 (C:H = 1:4)	144

Fig. 139 (C:H = 1:10) Enthalpie-Entropie-Diagramm für Kohlenstoff-Wasser-

stoff-Plasma, Modell I	
Fig. 95 (C:H = 1:1)	115
Fig. 110 (C:H = 1:2)	130

Fig. 140 (C:H = $1:10$)	160
Enthalpie in k 1/kg für Kahlenstaff. Wasserstaff. Diasma	

Enthalpie in kJ/kg für Kohlenstoff-Wasserstoff-Plasma, Modell I

Fig. 96 (C:H = 1:1)	116
Fig. 111 (C:H = 1:2)	131
Fig. 126 (C:H = 1:4)	146
Fig. 141 (C:H = $1:10$)	161
. .	

Enthalpie in kJ/m^3 für Kohlenstoff-Wasserstoff-Plasma, Modell I

Fig. 97 (C:H = 1:1)	117
Fig. 112 (C:H = 1:2)	132
Fig. 127 (C:H = 1:4)	147
Fig. 142 (C:H = 1:10)	162
Entropie in kJ/kg K für Kohlenstoff-Wasserstoff-Plasma	
Modell I	
Fig. 98 (C:H = 1:1)	118
Fig. 113 (C:H = 1:2)	133
Fig. 128 (C:H = 1:4)	148
Fig. 143 (C:H = $1:10$)	163

Freie Enthalpie in kJ/kg für Kohlenstoff-Wasserstoff-Plasma, Modell I

I lasilla, MOUCH I	
Fig. 99 (C:H = 1:1)	119
Fig. 114 (C:H = 1:2)	134
Fig. 129 (C:H = 1:4)	149
Fig. 144 (C:H = 1:10)	164

Dichte in kg/m³ für Kohlenstoff-Wasserstoff-Plasma,

Modeli I	
Fig. 100 (C:H = $1:1$)	120
Fig. 115 (C:H = 1:2)	135
Fig. 130 (C:H = 1:4)	150
Fig. 145 (C:H = 1:10)	165
Kompressibilitätsfaktor für Kohlenstoff-Wasserstoff-	
Plasma, Modell I	
Fig. 101 (C:H = 1:1)	121

1.101 (0.111 1.11)	10.
Fig. 116 (C:H = 1:2)	130
Fig. 131 (C:H = 1:4)	15
Fig. 146 (C:H = $1:10$)	16

Ionisierungsgrad für Kohlenstoff-Wasserstoff-Plasma, Modell I

122
137
152
167

168

Zahl der freien Elektronen im m³ für Kohlenstoff-Wasserstoff-Plasma mit einem C:H-Atomverhältnis 1:1 und 1:10, Modell I; Gesamtdruck: 1000; 100; 10; 1; 0,1 und 0,01 bar Fig. 148

Argon-Plasma, Modell I

107

159

Zusammensetzung von Argon-Plasma, Modell I Gesamtdruck: 100; 10; 1; 0,1 und 0,01 bar	
Fig. 149–153	169-173
Zusammensetzung von Argon-Plasma, Modell I, als Anzahl der Teilchen im m ³ ; Gesamtdruck 1 bar Fig. 154	174
Enthalpie-Entropie-Diagramm für Argon-Plasma, Modell I	
Fig. 155	175
Enthalpie in kJ/kg für Argon-Plasma, Modell I Fig. 156	176
Enthalpie in kJ/m ³ für Argon-Plasma, Modell I Fig. 157	177
Entropie in kJ/kg K für Argon-Plasma, Modell I Fig. 158	178
Freie Enthalpie in kJ/kg für Argon-Plasma, Modell I Fig. 159	179
Dichte in kg/m ³ für Argon-Plasma, Modell I Fig. 160	180
Kompressibilitätsfaktor für Argon-Plasma, Modell I Fig. 161	181
Ionisierungsgrad für Argon-Plasma, Modell I Fig. 162	182

Hilfsdiagramme

Zustandssummen für die Elektronenanregung	
Fig. 163	183
Gleichgewichtskonstanten für die Ionisierungsgleichgewichte	,
Fig. 164	184