Contents | Preface | vii | |---|-----| | Introduction | ix | | 1 LINEAR APPROXIMATION | 1 | | § 2 General Solution of the Linearized Equations | 1 | | 3 Linearized Korteweg-de Vries Equation | 4 | | 2 EXAMPLES OF DISPERSIVE MEDIA | 8 | | § 4 Gravitational Waves on Fluid Surfaces | 8 | | 5 The Boussinesq Equation | 10 | | § 6 Ion-sound Waves in Unmagnetized Plasma | 15 | | 7 Non-linear Waves in Magnetized Plasma | 18 | | 8 Non-linear Electromagnetic Waves in Isotropic Dielectrics | 25 | | S 9 Sound Waves with Dispersion | 32 | | 3 NON-LINEAR STATIONARY WAVES | 37 | | § 10 Steady Solutions of the Boussinesq Equations
§ 11 Stationary Waves Propagating Transversely to the Magnetic Field | 37 | | in Rarefied Plasma | 44 | | § 12 Other Examples of Stationary Waves | 47 | | 4 NON-LINEAR WAVES IN WEAKLY DISPERSIVE MEDIA | 53 | | 3 13 The Burgers Equation | 53 | | 3 14 Solution of the Burgers Equation | 59 | | 15 The Korteweg-de Vries Equation | 62 | | 16 Conservation Laws for the Korteweg-de Vries Equation | 66 | | 17 General Pattern of the Evolution of Initial Perturbations in Weakly | | | Dispersive Media | 69 | | 18 Analytical Solution of the Korteweg-de Vries Equation 19 Asymptotic Expressions for the Amplitudes of Solitons and "Tails" | 72 | | for Large Values of σ | 80 | ## CONTENTS | § 20 Self-similar Solutions of the Korteweg-de Vries Equation § 21 Quasi-linear Solutions of the Korteweg-de Vries Equation § 22 Flow Around a Thin Body in a Dispersive Medium § 23 Shock Waves in Dispersive Media | 83
85
92
101 | |---|---| | 5 WAVES OF ENVELOPES | 106 | | § 24 Non-linear Geometrical Optics § 25 Instability Criteria for Stationary Waves § 26 Evolution of the Wave Envelopes in the Hydrodynamic Approximation § 27 Non-linear Parabolic Equation § 28 Self-modulation of Waves (Modulational Instability) § 29 Self-focusing and Self-channelling of Waves § 30 Electro-acoustic Waves in Plasma | 106
109
112
120
128
135
141 | | APPENDIX A NON-LINEAR WAVES WITH SLOWLY VARYING PARAMETERS (ADIABATIC APPROXIMATION OF WHITHAM) | 147 | | A1 Variation Principle A2 Adiabatic Invariants A3 Non-linear Geometrical Optics | 147
152
156 | | APPENDIX B EVOLUTION OF ELECTRO-ACOUSTIC WAVES IN PLASMA WITH NEGATIVE DIELECTRIC PERMITTIVITY | 158 | | B1 Boundary Conditions B2 Excitation and Evolution of Electro-acoustic Waves B3 Solution of the Boundary-value Problem B4 General Solution of the Fundamental Equations | 158
161
170
174 | | References | 177 | | Index | 181 | | Other Titles in the Series in Natural Philosophy | 185 |